1996年全国初中数学联赛试卷
发布:2024/4/20 14:35:0
一、选择题(共6小题,每小题7分,满分42分)
-
1.已知ab=1,M=
,N=11+a+11+b,则M与N的大小关系为( )a1+a+b1+b组卷:1069引用:42难度:0.9 -
2.设正整数a、m、n满足
=a2-42-m,则这样的a、m、n的取值( )n组卷:835引用:8难度:0.9 -
3.如图,A是半径为1的⊙O外的一点,OA=2,AB是⊙O的切线,点B是切点,弦BC∥OA,连接AC.则图中阴影部分面积等于( )
组卷:376引用:13难度:0.5 -
4.设x1、x2是二次方程x2+x-3=0的两个根,那么
-4x31+19的值等于( )x22组卷:1726引用:11难度:0.5
三、解答题(共3小题,满分70分)
-
12.设凸四边形ABCD的对角线AC、BD的交点为M,过点M作AD的平行线分别交AB、CD于点E、F,交BC的延长线于点O,P是以O为圆心OM为半径的圆上一点(位置如图所示),求证:∠OPF=∠OEP.
组卷:165引用:2难度:0.5 -
13.已知a、b、c都是正整数,且抛物线y=ax2+bx+c与x轴有两个不同的交点A、B,若A、B到原点的距离都小于1,求a+b+c的最小值.
组卷:386引用:5难度:0.1