人教B版(2019)必修第四册《11.4 空间中的垂直关系》2021年同步练习卷(2)
发布:2024/4/20 14:35:0
一、选择题:本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
-
1.已知m,n是两条不同的直线,α,β是两个不同的平面,则下列命题中正确的是( )
组卷:84引用:3难度:0.7 -
2.已知l,m,n为三条不同的直线,α,β为两个不同的平面,则下列命题中正确的是( )
组卷:64引用:9难度:0.7 -
3.直三棱柱ABC-A1B1C1中,AB=AC=AA1,∠BAC=60°,则AC1与面BCC1B1成角的正弦值为( )
组卷:329引用:5难度:0.6 -
4.在正三棱锥A-BCD中,点P,Q,R分别在棱BC,BD,AB上,CP=
CB,BQ=12BD,AR=14AB,12
则( )组卷:388引用:2难度:0.6 -
5.已知两条直线m,n和平面α,且n∥α,则“m⊥n”是“m⊥α”的( )
组卷:204引用:6难度:0.7 -
6.在空间四边形ABCD中,AD⊥BC,BD⊥AD,那么必有( )
组卷:482引用:3难度:0.6 -
7.正三棱柱ABC-A1B1C1各棱长均为1,M为CC1的中点,则点B1到截面A1BM的距离为( )
组卷:90引用:5难度:0.9
四、解答题:本题共6小题,共70分。解答应写出文字说明、证明过程或演算步骤。
-
21.如图,在三棱柱ABC-A1B1C1中,侧棱垂直于底面,AB⊥BC,E、F分别为A1C1和BC的中点.
(1)求证:平面ABE⊥平面B1BCC1;
(2)求证:C1F∥平面ABE.组卷:540引用:19难度:0.3 -
22.如图,在三棱锥P-ABC中,PA⊥平面ABC,底面ABC是直角三角形,PA=AB=BC=4,O是棱AC的中点,G是△AOB的重心,D是PA的中点.
(1)求证:BC⊥平面PAB;
(2)求证:DG∥平面PBC;
(3)求二面角A-PC-B的大小.组卷:99引用:3难度:0.5