2014-2015学年福建省莆田市哲理中学九年级(上)数学周练试卷(1)
发布:2024/11/13 13:0:2
一、选择题(每小题4分,共32分)
-
1.下列图形中,是中心对称图形的是( )
组卷:2605引用:516难度:0.9 -
2.下列事件中必然事件的是( )
组卷:149引用:1难度:0.9 -
3.把抛物线y=3x2先向上平移2个单位,再向右平移2个单位,所得的抛物线的解析式为( )
组卷:109引用:20难度:0.9 -
4.在相同时刻,物高与影长成正比.如果高为1.5米的标杆影长为2.5米,那么影长为30米的旗杆的高为( )
组卷:720引用:102难度:0.9 -
5.在平面直角坐标系中,矩形OABC的顶点A在x轴上,点C在y轴上,把矩形OABC绕着原点顺时针旋转90°得到矩形OA′B′C′,若OA=2,OC=4,则点B′的坐标为( )
组卷:206引用:3难度:0.9 -
6.如图,⊙O的半径为2,直线PA、PB为⊙O的切线,A、B为切点,若PA⊥PB,则OP的长为( )
组卷:82引用:6难度:0.9 -
7.已知⊙O的半径为1,点P到圆心O的距离为d,若抛物线y=x2-2x+d与x轴有两个不同的交点,则点P( )
组卷:231引用:9难度:0.9 -
8.已知二次函数y=ax2+bx+c中,其函数y与自变量x之间的部分对应值如下表所示:
x … 0 1 2 3 4 … y … 4 1 0 1 4 … 组卷:1236引用:45难度:0.9
三、解答题.
-
24.如图,在直角梯形ABCD中,AD∥BC,AB⊥BC,AD=AB=1,BC=2.将点A折叠到CD边上,记折叠后A点对应的点为P(P与D点不重合),折痕EF只与边AD、BC相交,交点分别为E、F.过P作PN∥BC交AB于N、交EF于M
,连接PA、PE、AM,EF与PA相交于O.
(1)指出四边形PEAM的形状(不需证明);
(2)记∠EPM=a,△AOM、△AMN的面积分别为S1、S2.
①求证:;S1tana2=18PA2
②设AN=x,y=,试求出以x为自变量的函数y的解析式,并确定y的取值范围.S1-S2tana2组卷:496引用:3难度:0.1 -
25.如图,已知抛物线与x轴交于A(1,0)、B(-4,0)两点,与y轴交于点C(0,-2).
(1)求抛物线的解析式;
(2)如图1,点P为抛物线上一动点,且在第二象限,过点P作PE垂直x轴交于点E,是否存在这样的点P,使得以点P,E,A为顶点的三角形与△AOC相似?若存在,求出点P的坐标;若不存在,请说明理由;
(3)如图2,若直线BD交抛物线于点D,且tan∠DBA=,作一条平行于X轴的直线交抛物线于G、H两点,若以GH为直径的圆与直线BD相切,求此圆的半径.34组卷:125引用:1难度:0.1