2022-2023学年浙江省湖州市安吉高级中学高三(上)期末数学试卷
发布:2024/12/9 20:0:1
一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
-
1.已知集合
,则A∩B=( )A={x|x2-x-6≤0},B={x|x-4x+1≤0}组卷:173引用:2难度:0.7 -
2.设复数z满足
(其中i为虚数单位),则z=4+2i=( )z4+2i组卷:140引用:2难度:0.7 -
3.设坐标原点为O,抛物线y2=4x的焦点为F,过点F的直线交该抛物线于A,B两点,则
=( )OA•OB组卷:104引用:2难度:0.5 -
4.已知
,2sin2α=cos2α+1,则α∈(0,π2)=( )cos(3π2+α)组卷:229引用:5难度:0.7 -
5.已知正方形ABCD的边长为2,MN是它的内切圆的一条弦,点P为正方形四条边上的动点,当弦MN的长度最大时,
的取值范围是( )PM•PN组卷:712引用:6难度:0.5 -
6.研究变量x,y得到一组样本数据,进行回归分析,以下说法中错误的是( )
组卷:266引用:5难度:0.7 -
7.已知
,a=esin1+1esin1,b=etan2+1etan2,则( )c=ecos3+1ecos3组卷:387引用:8难度:0.5
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
-
21.如图所示,A,B为椭圆
的左、右顶点,离心率为C:x2a2+y2b2=1(a>b>0),且经过点32.(3,12)
(1)求椭圆C的方程;
(2)已知O为坐标原点,点P(-2,2),点M是椭圆C上的点,直线PM交椭圆C于点Q(M,Q不重合),直线BQ与OP交于点N.求证:直线AM,AN的斜率之积为定值,并求出该定值.组卷:209引用:6难度:0.5 -
22.已知a>0且a≠1,函数
.f(x)=logax+12ax2
(1)若a=e,求函数f(x)在x=1处的切线方程;
(2)若函数f(x)有两个零点,求实数a的取值范围.组卷:215引用:5难度:0.2