人教B版(2019)必修第二册《5.1.4 用样本估计总体》2020年同步练习卷
发布:2024/4/20 14:35:0
一、单选题
-
1.从某小区抽取100户居民进行月用电量调查,发现其月用电量都在50至350度之间,频率分布直方图如图所示,则这100户居民月用电量的中位数大约为( )
组卷:260引用:2难度:0.8 -
2.如图,这是某校高三年级甲、乙两班在上学期的5次数学测试的班级平均分的茎叶图,则下列说法不正确的是( )
组卷:150引用:3难度:0.7 -
3.有4万个不小于70的两位数,从中随机抽取了3000个数据,统计如表:
数据% 70<T<79 80<a<89 90<a<99 个数 800 1300 900 平均数 78.1 85 91.9 组卷:20引用:3难度:0.8 -
4.如图是某学校的教研处根据调查结果绘制的本校学生每天放学后的自学时间情况的频率分布直方图:根据频率分布直方图,求出自学时间的中位数和众数的估计值(精确到0.01)分别是( )
组卷:262引用:7难度:0.8 -
5.某歌手大赛进行电视直播,比赛现场有6名特约嘉宾给每位参赛选手评分,场内外的观众可以通过网络平台给每位参赛选手评分.某选手参加比赛后,现场嘉宾的评分情况如表,场内外共有数万名观众参与了评分,组织方将观众评分按照[70,80),[80,90),[90,100]分组,绘成频率分布直方图如图:
嘉宾 A B C D E F 评分 96 95 96 89 97 98 ,场内外的观众评分的平均数为x1,所有嘉宾与场内外的观众评分的平均数为x2,则下列选项正确的是( )x组卷:144引用:4难度:0.8
二、填空题
-
6.解放战争中,国民党军队拥有过多辆各型坦克,编成了1个装甲兵团(师级编制).我军为了知道这个装甲兵团的各型坦克的数量,采用了两种方法:一种是传统的情报窃取,一种是用统计学的方法进行估计.统计学的方法最后被证实比传统的情报收集更精确.这个装甲兵团对各型坦克从1开始进行了连续编号,在解放战争期间我军把缴获的这些坦克的编号进行记录并计算出这些编号的平均值为112.5,假设缴获的坦克代表了所有坦克的一个随机样本,则利用你所学过的统计知识估计这个装甲兵团的各型坦克的数量大约有.
组卷:107引用:2难度:0.8
一、【提升练习】
-
19.某市约有20万住户,为了节约能源,拟出台“阶梯电价”制度,即制定住户月用电量的临界值a.若某住户某月用电量不超过a度,则按平价(即原价)0.5(单位:元/度)计费;若某月用电量超过a度,则超出部分按议价b(单位:元/度)计费,未超出部分按平价计费,为确定a的值,随机调查了该市100户的月用电量,统计分析后得到如图所示的频率分布直方图.
根据频率分布直方图解答以下问题(同一组数据用该区间的中点值作代表):
(Ⅰ)若该市计划让全市70%的住户在“阶梯电价”出台前后缴纳的电费不变,求临界值a;
(Ⅱ)在(Ⅰ)的条件下,假定出台“阶梯电价”之后,月用电量未达a度的住户用电量保持不变;月用电量超过a度的住户节省“超出部分”的60%,试估计全市每月节约的电量;
(Ⅲ)在(Ⅰ)(Ⅱ)条件下,若出台“阶梯电价”前后全市缴纳电费总额不变,求议价b.组卷:127引用:4难度:0.5 -
20.某校的3000名高三学生参加了天一大联考,为了分析此次联考数学学科的情况,现随机从中抽取15名学生的数学成绩,并绘制成如图所示的茎叶图.将成绩低于90分的称为“不及格”,不低于120分的称为“优秀”,其余的称为“良好”.根据样本的数字特征估计总体的情况.
(1)估算此次联考该校高三学生的数学学科的平均成绩;
(2)估算此次联考该校高三学生数学成绩“不及格”和“优秀”的人数各是多少;
(3)在国家扶贫政策的倡导下,该地教育部门提出了教育扶贫活动,要求对此次数学成绩“不及格”的学生分两期进行学业辅导:一期由优秀学生进行一对一帮扶辅导,二期由老师进行集中辅导.根据实践总结,优秀学生进行一对一辅导的转化率为20%;老师集中辅导的转化率为30%,试估算经过两期辅导后,该校高三学生中数学成绩仍然不及格的人数.
注:转化率=×100%辅导前不及格人数-辅导后不及格人数辅导前不及格人数组卷:8引用:2难度:0.7