2022-2023学年广东省广州市荔湾区广雅中学花都校区高一(上)期末数学试卷
发布:2024/12/19 20:0:2
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.
-
1.已知集合U={x|0≤x≤6,x∈N},A={2,3,6},B={2,4,5},则A∩(∁UB)=( )
组卷:409引用:7难度:0.9 -
2.计算
的值为( )sin(-133π)组卷:883引用:3难度:0.9 -
3.已知a>b>c>0,则( )
组卷:159引用:11难度:0.7 -
4.荀子曰:“故不积跬步,无以至千里;不积小流,无以成江海.”这句来自先秦时期的名言.此名言中的“积跬步”是“至千里”的( )
组卷:602引用:28难度:0.7 -
5.设
,b=ln2,c=20.2,则a,b,c的大小关系为( )a=sin56π组卷:496引用:4难度:0.7 -
6.已知函数
,则f(1-x)的图象是( )f(x)=2x(x≤1)log12x(x>1)组卷:220引用:2难度:0.8 -
7.若角α与角β的终边关于y轴对称,则必有( )
组卷:983引用:10难度:0.8
四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
-
21.已知二次函数y=f(x)的图象过点(-2,-6),满足f(0)=-2且函数f(x-2)是偶函数.函数
.g(x)=f(x)x
(1)求二次函数y=f(x)的解析式;
(2)若对任意x∈[1,2],t∈[-4,4],g(x)≥-m2+tm恒成立,求实数m的范围;
(3)若函数恰好三个零点,求k的值及该函数的零点.y=g(|x|+3)+k•2|x|+3-11组卷:270引用:1难度:0.4 -
22.已知函数f(x)=log2(4x+1)+kx(k∈R)是偶函数.
(1)求k的值;
(2)设函数,其中a>0.若函数f(x)与g(x)的图象有且只有一个交点,求a的取值范围.g(x)=log2(a•2x-43a)组卷:537引用:22难度:0.5