2022年山东省日照市高考数学二模试卷
发布:2024/4/20 14:35:0
一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.
-
1.已知集合M={x|x2-2x<0},N={-2,-1,0,1,2},则M∩N=( )
组卷:517引用:15难度:0.9 -
2.z1,z2互为共轭复数,z1=1-i,则z1•z2=( )
组卷:60引用:6难度:0.8 -
3.若a,b,c为实数,且a<b,c>0,则下列不等关系一定成立的是( )
组卷:277引用:4难度:0.8 -
4.已知曲线
,则“a>0”是“曲线C是椭圆”的( )C:x2a+y2a-1=1组卷:90引用:3难度:0.8 -
5.曲线
在x=1处的切线的倾斜角为α,则cos2α的值为( )y=lnx-2x组卷:113引用:6难度:0.7 -
6.设a=sin1,则( )
组卷:74引用:1难度:0.7 -
7.已知王大爷养了5只鸡和3只兔子,晚上关在同一间房子里,清晨打开房门,这些鸡和兔子随机逐一向外走,则恰有2只兔子相邻走出房子的概率为( )
组卷:154引用:4难度:0.7
四、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
-
21.已知抛物线
过点M(4,4),O为坐标原点.C1:x2=2py(p>0)
(1)求抛物线C1的方程;
(2)直线l经过抛物线C1的焦点,且与抛物线C1相交于A,B两点,若弦AB的长等于6,求△OAB的面积;
(3)抛物线C1上是否存在异于O,M的点N,使得经过O,M,N三点的圆C和抛物线C1在点N处有相同的切线,若存在,求出点N的坐标,若不存在,请说明理由.组卷:122引用:1难度:0.5 -
22.已知函数
,其中a>0.f(x)=a|lnx|+x+1x
(1)当a=1时,求f(x)的最小值;
(2)讨论方程根的个数.ex+e-x-a|ln(ax)|-1ax=0组卷:165引用:2难度:0.3