试卷征集
加入会员
操作视频
当前位置: 试卷中心 > 试卷详情

2022年黑龙江省哈尔滨三中高考数学五模试卷(理科)

发布:2024/12/7 11:0:2

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.

  • 1.在复平面内,满足(1+i)z=1-i的复数z对应的点为Z,则
    |
    OZ
    |
    =(  )

    组卷:74引用:2难度:0.9
  • 2.已知集合A={x|y=ln(x-1)},集合B={-1,0,1,2,3},则A∩B=(  )

    组卷:68引用:4难度:0.9
  • 3.已知平面向量
    a
    =(1,2),
    b
    =(-2,y),若
    a
    b
    ,则
    |
    a
    +
    b
    |
    =(  )

    组卷:140引用:2难度:0.8
  • 4.下面几种推理中是演绎推理的为(  )

    组卷:33引用:1难度:0.8
  • 5.已知等差数列{an}的前n项和为Sn,a1=2,a7=4a3,则S10=(  )

    组卷:157引用:1难度:0.7
  • 6.已知双曲线
    C
    x
    2
    a
    2
    -
    y
    2
    b
    2
    =
    1
    a
    0
    b
    0
    的焦距为4,其右焦点到双曲线C的一条渐近线的距离为
    2
    ,则双曲线C的渐近线方程为(  )

    组卷:283引用:3难度:0.7
  • 7.在三棱柱ABC-A1B1C1中,D,E分别为AB、B1C1的中点,若AA1=AC=2,DE=
    6
    ,则DE与CC1所成角的余弦值为(  )

    组卷:46引用:3难度:0.7

(二)选考题:共10分.请考生在第22、23题中任选一题作答.如果多做,则按所做的第一题计分.[选修4-4:坐标系与参数方程](本小题满分10分)

  • 22.在平面直角坐标系xOy中,已知直线l的参数方程为
    x
    =
    2
    +
    2
    2
    t
    y
    =
    1
    +
    2
    2
    t
    (t为参数),以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系,曲线C的极坐标方程为ρ=2(cosθ+sinθ).
    (Ⅰ)求直线l的普通方程和曲线C的直角坐标方程;
    (Ⅱ)设点P(2,1),直线l与曲线C的交点为A,B,求
    |
    PA
    |
    |
    PB
    |
    +
    |
    PB
    |
    |
    PA
    |
    的值.

    组卷:95引用:3难度:0.5

[选修4-5:不等式选讲](本小题满分0分)

  • 23.设函数f(x)=|2x-1|-|a-1|(a∈R).
    (1)当a=-1时,解不等式f(x)>|x+1|;
    (2)若存在x0使得不等式f(x0)>2|x0+1|成立,求实数a的取值范围.

    组卷:19引用:4难度:0.6
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正