2020-2021学年河南省新乡二十二中八年级(下)期中数学试卷
发布:2024/4/20 14:35:0
一、选择题(每题3分,共30分)
-
1.函数y=
自变量x的取值范围是( )x+1x-2组卷:2035引用:14难度:0.8 -
2.下列二次根式中:
、2、312、12,0.2,最简二次根式的个数为( )9组卷:672引用:9难度:0.9 -
3.下列二次根式与2
是同类二次根式的是( )3组卷:313引用:2难度:0.8 -
4.下列定理中有逆定理的是( )
组卷:43引用:1难度:0.6 -
5.如图,在四边形ABCD中,对角线AC与BD相交于点O,不能判断四边形ABCD是平行四边形的是( )
组卷:1598引用:86难度:0.9 -
6.有下面四个关系式:①y=|x|;②|y|=x;③2x2-y=0;④y=
(x≥0).其中y是x的函数的是( )x组卷:1753引用:6难度:0.9 -
7.下列条件中,使△ABC不是直角三角形的是( )
组卷:249引用:5难度:0.8
三.解答题(共8小题,共75分)
-
22.如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD,过点C作CE⊥AB交AB的延长线于点E,连接OE.
(1)求证:四边形ABCD是菱形;
(2)若AB=,BD=2,求OE的长.5组卷:780引用:14难度:0.5 -
23.(1)阅读材料
如图1,三角形ABC中,AB=AC=4,三角形ABC的面积为10,P为底边BC上一点,PE⊥AB,PF⊥AC,垂足分别为E,F.易证PE+PF=5.解题过程如下:
如图,连接AP,
∵PE⊥AB,PF⊥AC,
∴S△ABP=AB•PE,S△ACP=12AC•PF.12
∵S△ABP+S△ACP=S△ABC.
∴AC•PF=10.12AB•PE+12AB(PE+PF)=10.12
∴PE+PF=10×2÷4=5.
结论:过等腰三角形底边上的一点作两腰的高,两条高线之和等于等腰三角形面积的2倍再除以腰长.
(2)类比探究
如图2,在边长为5的菱形ABCD中,对角线BD=8,点P是直线BD上的动点,PE⊥AB于E,PF⊥AD于F.
①填空:
对角线AC的长是;菱形ABCD的面积是.
②探究:
如图2,当点P在对角线BD上运动时,求PE+PF的值;
③拓展:
当点P在对角线BD和DB的延长线上时,请直接写出PE,PF之间的数量关系.组卷:392引用:4难度:0.3