试卷征集
加入会员
操作视频
当前位置: 试卷中心 > 试卷详情

2022年广东省梅州市兴宁市中考数学一模试卷

发布:2024/4/20 14:35:0

一、单选题(每题3分,满分30分)

  • 1.如图所示的石板凳,它的俯视图是(  )

    组卷:43引用:3难度:0.8
  • 2.新冠疫情发生后,据不完全统计,截止到2021年8月,中国已经并正在向100多个国家捐助疫苗,同时向60多个国家出口疫苗,总量已超过770000000剂,为世界的疫情防控做出了巨大贡献.770000000用科学记数法表示为(  )

    组卷:47引用:6难度:0.8
  • 3.如图,在矩形ABCD中,对角线AC与BD相交于点O,已知∠ACB=25°,则∠AOB的大小是(  )

    组卷:2343引用:24难度:0.5
  • 4.关于一元二次方程x2+4x+3=0根的情况,下列说法中正确的是(  )

    组卷:1059引用:17难度:0.6
  • 5.从1,2,3这三个数中任取两数,分别记为m、n,那么点(m,n)在反比例函数
    y
    =
    6
    x
    图象上的概率为(  )

    组卷:328引用:6难度:0.5
  • 6.如图,若一次函数y=kx+b的图象经过点A(0,-1),B(1,1),则不等式kx+b>1的解集为(  )

    组卷:55引用:1难度:0.6
  • 7.如图,在△ABC中,AB=AC,以点C为圆心,CB长为半径画弧,交AB于点B和点D,再分别以点B,D为圆心,大于
    1
    2
    BD
    长为半径画弧,两弧相交于点M,作射线CM交AB于点E,若AE=5,BE=1,则EC的长度为(  )

    组卷:474引用:10难度:0.5
  • 8.如图,在平面直角坐标系中,已知⊙D经过原点O,与x轴,y轴分别交于A,B两点,点B坐标为 (0,2
    3
    ),OC与⊙D交于点C,∠OCA=30°,则图中阴影部分的面积为(  )

    组卷:1152引用:7难度:0.5

三、解答题(满分72分)

  • 24.如图1,已知排球场的长度为18m,宽9m,位于球场中线处的球网AB的高,度为2.24m.一球员定点发球技术非常稳定,当他站在底线中点O处发球时,排球运动轨迹是如图2的抛物线,C点为击球点,OC=1.8m,球飞行到达最高点F处时,其高度为2.6m,F与C的水平之距为6m,以O为原点建立如图所示的平面直角坐标系(排球大小)忽略不计).
    (1)当他站在底线中点O处向正前方发球时,
    ①求排球飞行的高度y与水平距离x之间的函数关系式(不用写x的取值范围).
    ②这次所发的球能够过网吗?如果能够过网,是否会出界?并说明理由.
    (2)假设该球员改变发球方向和击球点高度时球运动轨迹的抛物线形状不变,在点O处上方击球,要使球落在①号区域(以对方场地的边线底线交点M为圆心,半径为1.5m的扇形)内,球员跳起的高度范围是多少?(
    17
    ≈4.12,结果保留两位小数)

    组卷:348引用:3难度:0.2
  • 25.如图1,抛物线y=ax2+bx+c的图象与x轴交于A(-2,0)、B(5,0)两点,过点C(2,4).动点D从点A出发,以每秒1个单位长度的速度沿AB方向运动,设运动的时间为t秒.
    (1)求抛物线y=ax2+bx+c的表达式;
    (2)过D作DE⊥AB交AC于点E,连接BE.当t=3时,求△BCE的面积;
    (3)如图2,点F(4,2)在抛物线上.当t=5时,连接AF,CF,CD,在抛物线上是否存在点P,使得∠ACP=∠DCF?若存在,直接写出此时直线CP与x轴的交点Q的坐标,若不存在,请简要说明理由.

    组卷:299引用:3难度:0.4
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正