2020-2021学年河南省鹤壁高级中学高三(下)第十六次模拟数学试卷(理科)
发布:2024/4/20 14:35:0
一、选择题(每题5分,共60分)
-
1.命题p:“3<m<4”是命题q:“曲线
表示双曲线”的( )x2m-3-y25-m=1组卷:567引用:3难度:0.8 -
2.已知复数z=
是纯虚数,其中a是实数,则z等于( )(2+ai)i1-i组卷:107引用:4难度:0.8 -
3.若圆x2+y2-2x-2y=0上至少有三个不同点到直线l:y=kx的距离为
,则直线l的倾斜角的取值范围是( )22组卷:177引用:3难度:0.7 -
4.若函数f(x)=lnx-cx+
存在垂直于y轴的切线,又g(x)=12x2,且有g[g(1)]=1,则a+b+c的最小值为( )log3x,x>0x+(a+b)3,x≤0组卷:81引用:2难度:0.6 -
5.已知α、β是两个不同的平面,m、n是两条不同的直线,下列命题中错误的是( )
组卷:142引用:6难度:0.7 -
6.一个四棱锥的三视图如图所示,则该四棱锥的体积为( )
组卷:155引用:4难度:0.6 -
7.2020年初,我国派出医疗小组奔赴相关国家,现有四个医疗小组甲、乙、丙、丁,和有4个需要援助的国家可供选择,每个医疗小组只去一个国家,设事件A=“4个医疗小组去的国家各不相同”,事件B=“小组甲独自去一个国家”,则P(A|B)=( )
组卷:754引用:3难度:0.7
三.解答题(17-22题为必做题,每题12分;22和23只需要做其中一题,10分,共70分)
-
22.在直角坐标系xOy中,曲线C1的参数方程为
,(θ为参数),已知点Q(6,0),点P是曲线C1上任意一点,点M为PQ的中点,以坐标原点为极点,x轴正半轴为极轴建立极坐标系.x=2cosθy=2sinθ
(1)求点M的轨迹C2的极坐标方程;
(2)若直线l:y=kx与曲线C2交于A,B两点,若=2OA,求k的值.AB组卷:250引用:6难度:0.7 -
23.(1)已知关于x的不等式|2x+1|-|x-1|≤log2a(其中a>0),当a=4时,求不等式的解集;
(2)已知x,y均为正数,且x>y,求证:.2x+1x2-2xy+y2≥2y+3组卷:17引用:3难度:0.6