2021年浙江省金华一中高考数学最后一卷
发布:2024/4/20 14:35:0
一、填空题,本大题共8小题,每小题8分,满分64分
-
1.设x>0,平面向量
,AB=(0,1),BC=(1,2).若CD=(log3x,log9x),则x的值为 .AC•BD=2组卷:48引用:1难度:0.6 -
2.设a1=1,a2=2,
,则an=2a3n-1an-2(n≥3)的值为 .a8-a16(a2+a4)(a4+a8)组卷:89引用:1难度:0.6 -
3.在椭圆中,O为中心,P为短轴端点,F1,F2为两个焦点.已知|F1F2|=3,且点O到直线F1P的距离为1,则椭圆的离心率为 .
组卷:114引用:1难度:0.7
二、解答题,本大题共3小题,满分56分,解答应写出文字说明、证明过程或演算步骤.
-
10.在平面直角坐标系xOy中,过x轴上一点P作两条直线A1B1,A2B2,其中A1,B1,A2,B2均在抛物线Γ:y2=x上.已知A1B2,A2B1分别经过x轴上的点S,T,试比较
与|OP|2的大小,并说明理由.OS•OT组卷:66引用:1难度:0.6 -
11.设x∈(0,1),
∉Z,且1x.称x为好数,如果x使上述所定义的{an}满足a1+a2+…+a10>-1且a1a2…a10>0.求全体好数在数轴上所对应的所有区间的长度之和.an=nx(1-x)(1-2x)…(1-nx)(n≥1)组卷:42引用:1难度:0.4