2023年山东省济南市市中区育英中学中考数学三模试卷
发布:2024/5/11 8:0:9
一、选择题(共10小题)
-
1.-
的绝对值是( )17组卷:1882引用:9难度:0.9 -
2.如图是由几个小正方体组成的几何体,它的左视图是( )
组卷:364引用:9难度:0.8 -
3.2021年3月5日,李克强总理在政府工作报告中指出,我国脱贫攻坚成果举世瞩目,5575万农村贫困人口实现脱贫.5575万=55750000,用科学记数法将55750000表示为( )
组卷:951引用:9难度:0.8 -
4.如图,AB∥CD,∠1=45°,∠2=35°,则∠3的度数为( )
组卷:899引用:18难度:0.7 -
5.下列运算正确的是( )
组卷:657引用:26难度:0.7 -
6.下列图形中既是轴对称图形又是中心对称图形的是( )
组卷:31引用:1难度:0.8 -
7.实数m,n在数轴上的对应点如图所示,则下列各式子正确的是( )
组卷:5387引用:35难度:0.7 -
8.如图显示了用计算机模拟随机抛掷一枚硬币的某次实验的结果
下面有三个推断:
①当抛掷次数是100时,计算机记录“正面向上”的次数是47,所以“正面向上”的概率是0.47;
②随着试验次数的增加,“正面向上”的频率总在0.5附近摆动,显示出一定的稳定性,可以估计“正面向上”的概率是0.5;
③若再次用计算机模拟此实验,则当抛掷次数为150时,“正面向上”的频率一定是0.45.
其中合理的是( )组卷:2028引用:22难度:0.7
三、解答题
-
24.平面内,先将一个多边形以自身的一个顶点为位似中心放大或缩小,再将所得多边形沿过该点的直线翻折,称这种变换为自位似轴对称变换,变换前后的图形成自位似轴对称.例如:如图1,先将△ABC以点A为位似中心缩小,得到△ADE,再将△ADE沿过点A的直线l翻折,得到△AFG,则△ABC和△AFG成自位似轴对称.
(1)如图2,在△ABC中,∠ACB=90°,AC<BC,CD⊥AB,垂足为D.下列3对三角形:①△ABC和△ACD;②△BAC和△BCD;③△DAC和△DCB.其中成自位似轴对称的是 ;(填写所有符合要求的序号)
(2)在(1)答案最大序号图形中,AC=3,BC=4,设自位似轴对称变换的对称轴与CD交于点E,求CE;
(3)如图4,在△ABC中,D是BC的中点,E为△ABC内一点,∠ABE=∠C,∠BAE=∠CAD,连接DE,求证:DE∥AC.组卷:228引用:1难度:0.1 -
25.如图(1),二次函数y=x2+bx+c的图象与x轴交于A,B两点,与y轴交于C点,点B的坐标为(3,0),点C的坐标为(0,-3),直线l经过B,C两点.
(1)求二次函数的表达式;
(2)点P为直线l上的一点,过点P作x轴的垂线与该二次函数的图象相交于点M,再过点M作y轴的垂线与该二次函数的图象相交于另一点N,当PM=MN时,求点P的横坐标;
(3)如图(2),点C关于x轴的对称点为点D,点P为线段上BC的一个动点,连接AP;点Q为线段AP上一点,且AQ=3PQ,连接DQ,求3AP+4DQ的最小值 (直接写出答案).组卷:999引用:3难度:0.1