人教五四新版九年级(上)中考题单元试卷:第31章 圆(24)
发布:2024/4/20 14:35:0
一、选择题(共1小题)
-
1.如图,P为⊙O的直径BA延长线上的一点,PC与⊙O相切,切点为C,点D是⊙O上一点,连接PD.已知PC=PD=BC.下列结论:
(1)PD与⊙O相切;(2)四边形PCBD是菱形;(3)PO=AB;(4)∠PDB=120°.
其中正确的个数为( )组卷:5161引用:79难度:0.7
二、填空题(共1小题)
-
2.如图,已知BC是⊙O的直径,AC切⊙O于点C,AB交⊙O于点D,E为AC的中点,连接DE.
(1)若AD=DB,OC=5,求切线AC的长;
(2)求证:ED是⊙O的切线.组卷:3639引用:70难度:0.5
三、解答题(共28小题)
-
3.如图,以线段AB为直径作⊙O,CD与⊙O相切于点E,交AB的延长线于点D,连接BE,过点O作OC∥BE交切线DE于点C,连接AC.
(1)求证:AC是⊙O的切线;
(2)若BD=OB=4,求弦AE的长.组卷:3903引用:69难度:0.5 -
4.如图,射线PA切⊙O于点A,连接PO.
(1)在PO的上方作射线PC,使∠OPC=∠OPA(用尺规在原图中作,保留痕迹,不写作法),并证明:PC是⊙O的切线;
(2)在(1)的条件下,若PC切⊙O于点B,AB=AP=4,求的长.ˆAB组卷:721引用:60难度:0.5 -
5.如图,AC是⊙O的直径,OB是⊙O的半径,PA切⊙O于点A,PB与AC的延长线交于点M,∠COB=∠APB.
(1)求证:PB是⊙O的切线;
(2)当OB=3,PA=6时,求MB,MC的长.组卷:2397引用:62难度:0.5 -
6.如图,已知PC平分∠MPN,点O是PC上任意一点,PM与⊙O相切于点E,交PC于A、B两点.
(1)求证:PN与⊙O相切;
(2)如果∠MPC=30°,PE=2,求劣弧3的长.ˆBE组卷:1204引用:60难度:0.5 -
7.如图,CE是⊙O的直径,BD切⊙O于点D,DE∥BO,CE的延长线交BD于点A.
(1)求证:直线BC是⊙O的切线;
(2)若AE=2,tan∠DEO=,求AO的长.2组卷:5805引用:68难度:0.5 -
8.如图,PB为⊙O的切线,B为切点,过B作OP的垂线BA,垂足为C,交⊙O于点A,连接PA、AO,并延长AO交⊙O于点E,与PB的延长线交于点D.
(1)求证:PA是⊙O的切线;
(2)若=OCAC,且OC=4,求PA的长和tanD的值.23组卷:5108引用:66难度:0.5 -
9.如图,AC平分∠MAN,点O在射线AC上,以点O为圆心,半径为1的⊙O与AM相切于点B,连接BO并延长交⊙O于点D,交AN于点E.
(1)求证:AN是⊙O的切线;
(2)若∠MAN=60°,求图中阴影部分的面积(结果保留根号和π).组卷:530引用:58难度:0.5 -
10.如图,BC是⊙O的直径,A是⊙O上一点,过点C作⊙O的切线,交BA的延长线于点D,取CD的中点E,AE的延长线与BC的延长线交于点P.
(1)求证:AP是⊙O的切线;
(2)OC=CP,AB=6,求CD的长.组卷:1207引用:67难度:0.5
三、解答题(共28小题)
-
29.如图1,△ABC中,CA=CB,点O在高CH上,OD⊥CA于点D,OE⊥CB于点E,以O为圆心,OD为半径作⊙O.
(1)求证:⊙O与CB相切于点E;
(2)如图2,若⊙O过点H,且AC=5,AB=6,连接EH,求△BHE的面积和tan∠BHE的值.组卷:2180引用:55难度:0.3 -
30.如图,⊙O的直径AB=6,AD、BC是⊙O的两条切线,AD=2,BC=
.92
(1)求OD、OC的长;
(2)求证:△DOC∽△OBC;
(3)求证:CD是⊙O切线.组卷:2198引用:53难度:0.3