2007年第5届“学用杯”全国数学知识应用竞赛九年级初赛试卷
发布:2024/4/20 14:35:0
一、填空题(每小题6分,共36分)
-
1.如图的⊙A和⊙B是抗日战争时期敌人要塞阵地的两个“母子碉堡”,被称为“母碉堡”A的半径是6米,“子碉堡”B的半径是3米,两个碉堡中心的距离AB=80米.我侦察兵在安全地带P的视线恰好与敌人的“母子碉堡”都相切,为了打击敌人,必须准确地计算出点P到敌人两座碉堡中心的距离PA和PB的大小,请你利用圆的知识计算出PA=
组卷:32引用:1难度:0.9 -
2.小丽将一个边长为2a的正方形纸片ABCD折叠,顶点A落到CD边上的点M的位置,折痕交AD于E,交BC于F,边AB折叠后与BC边交于点G(如图).在折叠过程中,小丽发现当点M在CD边上的任意位置时,(点C,D除外),△CMG的周长总是相等的,那么△CMG的周长为
组卷:46引用:1难度:0.9 -
3.国际蔬菜科技博览会开幕,学校将组织360名师生乘车参观.某客车出租公司有两种客车可供选择:甲种客车每辆40个座位,租金400元;乙种客车每辆50个座位,租金480元,则租用该公司客车最小需付租金元.
组卷:61引用:1难度:0.9 -
4.光明路新华书店为了提倡人们“多读书,读好书”,每年都要开展分年级免费赠书活动,今年获得免费赠书的前提是:顺利通过书店前的A,B,C三个房间(在每个房间内都有一道题,若能在规定的时间内顺利答对这三道题,就可免费得到赠书),同学们你们想参加吗?快快行动吧!
题目并不难哟,把答案写在下面吧!A房间答题卡:组卷:44引用:1难度:0.5 -
5.某校数学课外活动探究小组,在教师的引导下,对“函数
的性质”作了如下探究:y=x+kx(x>0,k>0)
因为,y=x+kx=(x)2-2x•kx+(kx)2+2k=(x-kx)2+2k
所以当x>0,k>0时,函数有最小值y=x+kx,此时2k,x=kx.x=k
借助上述性质:我们可以解决下面的问题:
某工厂要建造一个长方体无盖污水处理池,其容积为4800m3,深为3m,如果池底每平方米的造价为150元,池壁每平方米的造价为120元,问怎样设计水池能使总造价最低,最低总造价为元.组卷:190引用:1难度:0.5
四、开放题(本大题满分40分)
-
16.在生活中不难发现这样的例子:三个量a,b和c之间存在着数量关系a=bc.例如:长方形面积=长×宽,匀速运动的路程=速度×时间.
(1)如果三个量a,b和c之间有着数量关系a=bc,那么:
①当a=0时,必须且只须
②当b(或c)为非零定值时,a与c(或b)之间成
③当a(a≠0)为定值时,b与c之间成
(2)请你编一道有实际意义的应用性问题,解题所列的方程符合数量关系:,(其中x为未知数,a,b,c为已知数,不必解方程).ax=bx-c组卷:743引用:1难度:0.3 -
17.金字塔是古代世界著名的奇迹之一,矗立在尼罗河西岸的70多座金字塔,每年都吸引着来自世界各地的游客,流连在金字塔下,抬眼望去,几十层楼高的塔像柄巨剑直刺云天,显得气势非凡.此刻,游人心里很自然地会想:金字塔究竟有多高呢?
假设你是一位游人,如何测量金字塔的高度呢?写出你的测量方案,并说明理由(注意:至少提供两种测量方案,并且,你的方案一定要切实可行).组卷:51引用:1难度:0.5