2023-2024学年北京师大附中高三(上)期中数学试卷
发布:2024/10/20 7:0:2
一、单选题(共10小题;共40分)
-
1.已知集合A={x|-2≤x≤3},B={x|x>0},则A∪B=( )
组卷:315引用:6难度:0.8 -
2.复数
的共轭复数z=21+i=( )z组卷:250引用:4难度:0.8 -
3.已知向量
=(m,1),a=(-1,2).若b∥a,则m=( )b组卷:214引用:3难度:0.8 -
4.下列函数中,是奇函数且在定义域内单调递减的是( )
组卷:522引用:11难度:0.8 -
5.记cos(-80°)=k,那么tan100°=( )
组卷:4211引用:52难度:0.9 -
6.已知两点A(-2,0),B(0,2),点C是圆x2+y2-4x+4y+6=0上任意一点,则△ABC面积的最小值是( )
组卷:500引用:5难度:0.7 -
7.函数f(x)=cos(ωx+φ)的部分图象如图所示,则f(x)的单调递减区间为( )
组卷:957引用:24难度:0.9
三、解答题(共6小题:共85分)
-
20.已知函数f(x)=x-alnx,g(x)=-
(a>0).1+ax
(Ⅰ)若a=1,求函数f(x)的极值;
(Ⅱ)设函数h(x)=f(x)-g(x),求函数h(x)的单调区间;
(Ⅲ)若存在x0∈[1,e],使得f(x0)<g(x0)成立,求a的取值范围.组卷:1160引用:11难度:0.1 -
21.已知{an}为无穷递增数列,且对于给定的正整数k,总存在i,j.使得ai≤k,aj≤k,其中i≤j.令bk为满足ai≤k的所有i中的最大值,ck为满足aj≥k的所有j中的最小值.
(1)若无穷递增数列{an}的前四项是1,2,3,5,求b4和c4的值;
(2)若{an}是无穷等比数列,a1=1,公比q为大于1的整数,b3<b4=b5,c3=c4,求q的值;
(3)若{an}是无穷等差数列,a1=1,公差为,其中m为常数,且m>1,m∈N*,求证:b1,b2,⋯,bk,⋯和c1,c2,⋯,ck,⋯都是等差数列,并写出这两个数列的通项公式.1m组卷:67引用:2难度:0.2