试卷征集
加入会员
操作视频
当前位置: 试卷中心 > 试卷详情

人教五四新版九年级(上)中考题同步试卷:31.2 点和圆、直线和圆的位置关系(08)

发布:2024/4/20 14:35:0

一、选择题(共5小题)

  • 1.如图,已知AB是⊙O的直径,AD切⊙O于点A,点C是
    ˆ
    EB
    的中点,则下列结论不成立的是(  )

    组卷:859引用:77难度:0.7
  • 2.在等腰直角三角形ABC中,AB=AC=4,点O为BC的中点,以O为圆心作⊙O交BC于点M、N,⊙O与AB、AC相切,切点分别为D、E,则⊙O的半径和∠MND的度数分别为(  )

    组卷:1049引用:86难度:0.9
  • 3.如图,CD是⊙O的直径,弦AB⊥CD于点G,直线EF与⊙O相切于点D,则下列结论中不一定正确的是(  )

    组卷:971引用:79难度:0.9
  • 4.直线AB与⊙O相切于B点,C是⊙O与线段OA的交点,点D是⊙O上的动点(D与B,C不重合),若∠A=40°,则∠BDC的度数是(  )

    组卷:50引用:59难度:0.9
  • 5.在矩形ABCD中,AB=6,BC=4,有一个半径为1的硬币与边AB、AD相切,硬币从如图所示的位置开始,在矩形内沿着边AB、BC、CD、DA滚动到开始的位置为止,硬币自身滚动的圈数大约是(  )

    组卷:688引用:59难度:0.7

二、填空题(共6小题)

  • 6.如图,AB是半圆O的直径,点P在AB的延长线上,PC切半圆O于点C,连接AC.若∠CPA=20°,则∠A=
     
    °.

    组卷:367引用:65难度:0.7
  • 7.射线QN与等边△ABC的两边AB,BC分别交于点M,N,且AC∥QN,AM=MB=2cm,QM=4cm.动点P从点Q出发,沿射线QN以每秒1cm的速度向右移动,经过t秒,以点P为圆心,
    3
    cm为半径的圆与△ABC的边相切(切点在边上),请写出t可取的一切值
    (单位:秒)

    组卷:2675引用:102难度:0.9
  • 8.如图,在Rt△ABC中,∠C=90°,∠A=30°,
    AB
    =
    4
    3
    .若动点D在线段AC上(不与点A、C重合),过点D作DE⊥AC交AB边于点E.
    (1)当点D运动到线段AC中点时,DE=

    (2)点A关于点D的对称点为点F,以FC为半径作⊙C,当DE=
    时,⊙C与直线AB相切.

    组卷:502引用:62难度:0.9
  • 9.如图所示,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F,且∠EAF=80°,则图中阴影部分的面积是

    组卷:69引用:67难度:0.9
  • 10.如图,在Rt△AOB中,OA=OB=3
    2
    ,⊙O的半径为1,点P是AB边上的动点,过点P作⊙O的一条切线PQ(点Q为切点),则切线PQ的最小值为

    组卷:6340引用:103难度:0.7

三、解答题(共19小题)

  • 29.如图,已知AB是⊙O直径,BC是⊙O的弦,弦ED⊥AB于点F,交BC于点G,过点C作⊙O的切线与ED的延长线交于点P.
    (1)求证:PC=PG;
    (2)点C在劣弧AD上运动时,其他条件不变,若点G是BC的中点,试探究CG、BF、BO三者之间的数量关系,并写出证明过程;
    (3)在满足(2)的条件下,已知⊙O的半径为5,若点O到BC的距离为
    5
    时,求弦ED的长.

    组卷:2177引用:59难度:0.5
  • 30.已知:⊙O的直径为3,线段AC=4,直线AC和PM分别与⊙O相切于点A,M.
    (1)求证:点P是线段AC的中点;
    (2)求sin∠PMC的值.

    组卷:989引用:60难度:0.5
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正