2021-2022学年四川省遂宁中学高一(下)开学数学试卷
发布:2024/4/20 14:35:0
一、选择题(本大题共12小题,每小题5分,共计60分。在每小题给出的四个选项中,只有一项是符合题目要求。)
-
1.函数f(x)=
的定义域为( )(x-1)03-x组卷:492引用:9难度:0.8 -
2.已知集合A={x∈R|x2+x-6≤0},B={x∈Z|-2≤x<1},则A∩B=( )
组卷:503引用:2难度:0.9 -
3.函数f(x)=2x-x2+3的零点所在的区间可以是( )
组卷:354引用:3难度:0.7 -
4.已知角θ的顶点为坐标原点,始边为x轴的非负半轴,若P(2,y)是角θ终边上的一点,且sinθ=-
,则y的值为( )55组卷:354引用:2难度:0.8 -
5.针对“台独”分裂势力和外部势力勾结的情况,为捍卫国家主权和领土完整,维护中华民族整体利益和两岸同胞切身利益,解放军组织多种战机巡航台湾.已知海面上的大气压强是760mmHg,大气压强P(单位:mmHg)和高度h(单位:m)之间的关系为P=760e-hk(e为自然对数的底数,k是常数),根据实验知500m高空处的大气压强是700mmHg,则当歼20战机巡航高度为1000m,歼16D战机的巡航高度为1500m时,歼20战机所受的大气压强是歼16D战机所受的大气压强的( )倍.
组卷:299引用:7难度:0.8 -
6.已知某扇形的圆心角为
,面积为6π,则该扇形的弧长为( )π3组卷:410引用:5难度:0.9 -
7.若函数f(x)的定义域为[0,2],则函数f(5x-1)的定义域为( )
组卷:112引用:3难度:0.8
三、解答题:(本大题共6个小题,共70分.解答要写出文字说明,证明过程或演算步骤.)
-
21.已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,-
)在一个周期内的图象如图所示.π2<φ<π2
(1)求函数f(x)的最小正周期T及f(x)的解析式;
(2)求函数f(x)的对称轴方程及单调递增区间;
(3)将f(x)的图象向右平移个单位长度,再将所得图象上所有点的横坐标伸长为原来的2倍(纵坐标不变),得到函数g(x)的图像,若g(x)=a-1在x∈[π3,π2]上有两个解,求a的取值范围.3π2组卷:410引用:5难度:0.5 -
22.已知函数f(x)=2x,h(x)=x2-4x+5m,φ(x)与f(x)互为反函数.
(1)求φ(x)的解析式;
(2)若函数y=φ(h(x))在区间(3m-2,m+2)内有最小值,求实数m的取值范围;
(3)若函数(x>0),关于方程[g(x)]2+a|g(x)|+a+3=0有三个不同的实数解,求实数a的取值范围.g(x)=φ(4xx+1)组卷:575引用:4难度:0.5