2008年第6届“学用杯”全国数学知识应用竞赛九年级初赛试卷(A卷)
发布:2024/4/20 14:35:0
一、选择题(每小题6分,共30分)
-
1.在圆环形路上有均匀分布的四家工厂甲、乙、丙、丁,每家工厂都有足够的仓库供产品储存.现要将所有产品集中到一家工厂的仓库储存,已知甲、乙、丙、丁四家工厂的产量之比为1:2:3:5.若运费与路程、运的数量成正比例,为使选定的工厂仓库储存所有产品时总的运费最省,应选的工厂是( )
组卷:402引用:13难度:0.5 -
2.王村和元村之间有一座小山,县里计划修建一条通过此小山的公路,以方便两村村民的来往,如图,经测量,从坡底B到坡顶A的坡角为30°,斜坡AB长为100米,根据地形,要求修好后的公路路面BD的坡度是1:5(假设A,D两点处于同一铅垂线上).为减少工程量,若AD≤20米,则直接开挖,若AD>20米,就要重新设计,根据你所学过的知识,你认为( )
组卷:100引用:1难度:0.9 -
3.由于矩形和菱形特殊的对称美和矩形的四个角都是直角,从而为密铺提供了方便,因此墙砖一般设计为矩形,而且图案以菱形居多,如图3所示,是长为30cm,宽为20cm的一块矩形瓷砖,E、F、G、H分别是矩形四边的中点,阴影部分为黄色,其它部分为淡蓝色,现有一面长为6m,高为3m的墙面准备贴这种瓷砖,那么:这面墙要贴的瓷砖数及全部贴满后这面墙上最多出现的与图3中面积相等的菱形个数分别为( )
组卷:62引用:1难度:0.9 -
4.一位警察奉命追击一名正在向南偏西30°方向逃蹿的罪犯,如图,警察的位置在点A(120,
+30),罪犯的位置在点B(-180,1203),图中的阴影部分表示一条东西走向宽30米的河道,如果警察追击的速度是8米/秒,罪犯逃跑的速度是7.5米/秒,且警察-1803经过河道时正好有一座垂直于河道两岸的桥,要想在最短的时间内追上罪犯,警察至少要追击的时间为( )
组卷:70引用:1难度:0.7 -
5.如果我们把地球赤道看成一个圆,并且在地球赤道上空同样高度的位置有等距离的三颗地球同步通讯卫星,使卫星发射的信号能够覆盖全部赤道,那么卫星高度至少为( )(地球半径为R≈6370km)
组卷:39引用:1难度:0.9
三、解答题(本大题共90分)
-
14.信息处理:假日里,小红和爸爸、妈妈想到风景如画的天波山去游玩,他们经过了解得到如下信息:
如果他们从本市汽车站出发到天波山去,那么只有一条道路可走.但顺着这条路,他们既可以乘坐公共汽车,也可以骑自行车,也可以将两者结合进行.综合起来,有以下四种不同的方案可以采用.
方案1:他们可以全程乘坐汽车.但汽车要在中途荷花湖站停留30分钟.
方案2:他们也可以全程骑自行车.如果他们在汽车驶离汽车站的同时开始骑自行车也从汽车站出发,那么当汽车到达天波山的时候,他们还有1km的路程.
方案3:他们可以先骑自行车到达荷花湖站,然后再乘坐汽车.如果他与汽车同时离开汽车站,那么当他们骑自行车行驶4km的路程时,汽车已经到达荷花湖站.但是因为汽车要停留30分钟,所以当汽车正要离开荷花湖站时他刚好赶上,于是他就可以坐上汽车,前往天波山.
方案4:他们可以先乘坐汽车,到达荷花湖站之后,其余的路程再骑自行车.这是最快的方案,他们可以比汽车提前一刻钟到达天波山.
根据以上信息,请你求出汽车站到天波山的距离是多少千米?组卷:68引用:1难度:0.5 -
15.方案设计:儿童公园有一块半圆形空地,如图所示,根据需要欲在此半圆内划出一个三角形区域作为健身场地,其中内接于此三角形的矩形区域为儿童游乐场,已知半圆的直径AB=100米,若使三角形的顶点C在半圆上,且AC=80米.
那么请你帮设计人员计算一下:△ABC中,C到AB的距离是多少米?如果使矩形游乐场DEFN面积最大,此矩形的高DN应为何值?
在实际施工时,发现在AB上距B点18.5米处有一棵古树,那么这棵树是否位于最大游乐场的边上?若在,为保护古树,请你设计出另外的方案以避开古树.组卷:51引用:1难度:0.5