试卷征集
加入会员
操作视频
当前位置: 试卷中心 > 试卷详情

2010-2011学年江苏省南京一中高三(上)数学寒假作业(函数及其性质)

发布:2024/4/20 14:35:0

一、填空题

  • 1.函数
    y
    =
    1
    log
    0
    .
    5
    4
    x
    2
    -
    3
    x
    的定义域为

    组卷:479引用:5难度:0.7
  • 2.已知f(
    1
    2
    x-1)=2x+3,f(m)=6,则m=

    组卷:100引用:32难度:0.7
  • 3.若函数f(x)=2x2+ax-2在区间(-∞,-2)上是减函数,在区间(3,+∞)上是增函数,则f(1)的取值范围是

    组卷:19引用:1难度:0.9
  • 4.已知f(x)=
    1
    x
    0
    -
    1
    x
    0
    则不等式x+(x+2)•f(x+2)≤5的解集是

    组卷:644引用:63难度:0.5
  • 5.若函数
    y
    =
    a
    2
    -
    1
    x
    2
    +
    a
    -
    1
    x
    +
    2
    a
    +
    1
    的定义域为R,则a的取值范围为

    组卷:82引用:3难度:0.5
  • 6.已知函数f(x)的定义域为(0,+∞),且f(x)=2f(
    1
    x
    x
    -1,则f(x)=

    组卷:380引用:13难度:0.7

二、解答题(写出必要的证明与演算过程)

  • 19.已知f(x)=x|x-a|+2x-3.
    (Ⅰ)当a=4,2≤x≤5时,问x分别取何值时,函数f(x)取得最大值和最小值,并求出相应的最大值和最小值;
    (Ⅱ)若f(x)在R上恒为增函数,试求a的取值范围.

    组卷:24引用:1难度:0.5
  • 20.对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.已知f(x)=ax2+(b+1)x+b-1(a≠0).
    (1)当a=1,b=-2时,求函数f(x)的不动点;
    (2)若对任意实数b,函数f(x)恒有两个相异的不动点,求a的范围;
    (3)在(2)的条件下,若y=f(x)图象上A、B两点的横坐标是函数f(x)的不动点,且A、B两点关于直线y=kx+
    1
    2
    a
    2
    +
    1
    对称,求b的最小值.

    组卷:659引用:28难度:0.1
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正