2021-2022学年安徽省合肥一中、六中等四校高一(下)期末数学试卷
发布:2024/4/20 14:35:0
一、选择题:(一)(单项选择题)本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的。
-
1.已知平面向量
,则与a=(3,-4)同向的单位向量为( )a组卷:231引用:2难度:0.9 -
2.如果复数
(其中i为虚数单位,b为实数)为纯虚数,那么z的虚部为( )z=2-bi1+3i组卷:54引用:1难度:0.8 -
3.如图,已知正方体ABCD-A1B1C1D1的棱长为2,则下列四个结论中错误的是( )
组卷:339引用:4难度:0.5 -
4.甲袋中有8个白球,4个红球,乙袋中有6个白球,6个红球,这些小球除颜色外完全相同,从甲,乙两袋中各任取1个球,则下列结论错误的是( )
组卷:90引用:2难度:0.7 -
5.在△ABC中,角A,B,C所对的边分别为a,b,c,若2bsinA=
a,则B=( )3组卷:1274引用:5难度:0.8 -
6.已知在三棱锥M-ABC中,MA⊥平面ABC,MA=AB=BC=2,且△ABC为直角三角形,则该三棱锥的外接球的体积为( )
组卷:187引用:1难度:0.6 -
7.如图所示,在同一个平面内,向量
满足:OA,OB,OC与|OA|=|OB|,OA的夹角为α,且OC与tanα=7,OC的夹角为45°,若OB,则OC=mOA+nOB(m,n∈R)=( )mn组卷:238引用:1难度:0.5
四、解答题:本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤。
-
21.一个盒子装有红,白两种颜色的玻璃球,其中红球3个,白球2个.
(Ⅰ)若一次从盒子中随机取出两个玻璃球,求至少取到一个白色球的概率;
(Ⅱ)依次从盒子中随机取球,每次取一个,取后不放回,当某种颜色的球全部取出后即停止取球.求最后一次取出的是红色玻璃球的概率P2.组卷:77引用:1难度:0.9 -
22.如图,在三棱台ABC-A1B1C1中,A1B1与A1C,B1C1都垂直,已知AB=3,AA1=AC=5.
(Ⅰ)求证:平面A1BC⊥平面ABC;
(Ⅱ)直线A1B与底面ABC所成的角的大小θ为多少时,二面角A1-AC-B的余弦值为?2114
(Ⅲ)在(Ⅱ)的条件下,求点C到平面A1ABB1的距离.组卷:128引用:1难度:0.6