2022-2023学年江西省南昌三中九年级(下)期中数学试卷
发布:2024/4/20 14:35:0
一.选择题(共6小题)
-
1.下列方程是一元二次方程的是( )
组卷:119引用:3难度:0.8 -
2.下面四个几何体中,左视图是四边形的几何体共有( )
组卷:372引用:120难度:0.9 -
3.任意的两个( )不一定是相似图形.
组卷:392引用:8难度:0.8 -
4.二次函数y=kx2-x(k<0)的图象大致为( )
组卷:939引用:7难度:0.9 -
5.掷一枚质地均匀的骰子,向上一面的点数大于2且小于5的概率是( )
组卷:53引用:5难度:0.8 -
6.如图,A、B是函数y=
上两点,P为一动点,作PB∥y轴,PA∥x轴,下列说法正确的是( )12x
①△AOP≌△BOP;②S△AOP=S△BOP;③若OA=OB,则OP平分∠AOB;④若S△BOP=4,则S△ABP=16组卷:9431引用:21难度:0.4
二.填空题(共6小题)
-
7.若点M(3,a-2),N(b,a)关于原点对称,则a+b= .
组卷:3700引用:44难度:0.5
三、解答题(共11小题)
-
22.在△ABC中,∠ABC=120°,线段AC绕点A逆时针旋转60°得到线段AD,连接CD,BD交AC于P.
(1)若∠BAC=α,直接写出∠BCD的度数(用含α的代数式表示);
(2)求AB,BC,BD之间的数量关系;
(3)当α=30°时,直接写出AC,BD的关系.组卷:969引用:2难度:0.7 -
23.如图1,已知点P为抛物线y=
(x>0)上一动点,以P为顶点,且经过原点O的抛物线,记作“yP”,设其与x轴另一交点为A,点P的横坐标为m.12x2
(1)①当△OPA为直角三角形时,m=;
②当△OPA为等边三角形时,求此时“yP”的解析式;
(2)如图2,若P点的横坐标分别为1,2,3,…n(n为正整数)时,抛物线“yP”分别记作“”、“yP1”,…“yP2”,设其与x轴另外一交点分别为A1,A2,A3,…An,过P1,P2,P3,…Pn作x轴的垂线,垂足分别为H1,H2,H3,…Hn.yPn
①Pn的坐标为 ;OAn=;(用含n的代数式来表示)
②当PnHn-OAn=48时,求n的值.
(3)在(2)的条件下,是否存在这样的An,使得∠OP6An=90°,若存在,求n的值;若不存在,请说明理由.组卷:67引用:1难度:0.1