2021-2022学年山东省青岛实验中学七年级(下)期中数学试卷
发布:2024/4/20 14:35:0
一、选择题:(每道小题3分,共24分)
-
1.下列运算正确的是( )
组卷:585引用:8难度:0.7 -
2.如图,下列说法不正确的是( )
组卷:473引用:7难度:0.7 -
3.在实验课上,小亮利用同一块木板测得小车从不同高度下滑的时间,支撑物高度(h)与下滑的时间(t)的关系如下表:
支撑物高h(cm) 10 20 30 40 50 … 下滑时间t(s) 3.25 3.01 2.81 2.66 2.56 … 组卷:424引用:12难度:0.6 -
4.研究表明,某新型冠状病毒体大小约为125纳米也就是0.125微米,而95口罩能过滤0.3微米的颗粒,并不能将病毒过滤,口罩的作用是阻挡病毒传播的“载体”,而非直接挡住病毒.1纳米就是0.000000001米.那么0.3微米用科学记数法表示为( )
组卷:315引用:7难度:0.9 -
5.小明有足够多的如图所示的正方形卡片A,B和长方形卡片C,如果他要拼一个长为(a+2b),宽为(a+b)的大长方形,共需要C类卡片( )
组卷:1498引用:8难度:0.8 -
6.如图,在下列给出的条件中,能判定AB∥DF的是( )
组卷:271引用:3难度:0.7 -
7.如图,直线AB∥CD,点E,F分别在直线.AB和直线CD上,点P在两条平行线之间,∠AEP和∠CFP的角平分线交于点H,已知∠P=88°,则∠H的度数为( )
组卷:612引用:6难度:0.7 -
8.现有甲、乙两个正方形纸片,将甲、乙并列放置后得到图1,已知点H为AE的中点,连结DH,FH.将乙纸片放到甲的内部得到图2.已知甲、乙两个正方形边长之和为8,图2的阴影部分面积为6,则图1的阴影部分面积为( )
组卷:1153引用:5难度:0.5
三、解答题(本题共72分)
-
24.现有长与宽分别为a、b的小长方形若干个,用两个这样的小长方形拼成如图1的图形,用四个相同的小长方形拼成图2的图形,请认真观察图形,解答下列问题:
(1)根据图中条件,请写出图1和图2所验证的关于a、b的关系式:(用含a、b的代数式表示出来);
图1表示:;
图2表示:;
根据上面的解题思路与方法,解决下列问题:
(2)若x+y=8,x2+y2=40,求xy的值;
(3)请直接写出下列问题答案:
①若2m+3n=5,mn=1,则2m-3n= ;
②若(4-m)(5-m)=6,则(4-m)2+(5-m)2= .
(4)如图3,点C是线段AB上的一点,以AC,BC为边向两边作正方形,设AB=7,两正方形的面积和S1+S2=16,求图中阴影部分面积.组卷:2179引用:10难度:0.6 -
25.【阅读理解】:两条平行线间的拐点问题经常可以通过作一条直线的平行线进行转化.例如:如图1,MN∥PQ,点C、B分别在直线MN、PQ上,点A在直线MN、PQ之间.
求证:∠CAB=∠MCA+∠PBA;
证明:如图1,过点A作AD∥MN,
∵MN∥PQ,AD∥MN,
∴AD∥MN∥PQ,
∴∠MCA=∠DAC,∠PBA=∠DAB,
∴∠CAB=∠DAC+∠DAB=∠MCA+∠PBA,
即:∠CAB=∠MCA+∠PBA;
【类比应用】已知直线AB∥CD,P为平面内一点,连接PA、PD.
(1)如图2,已知∠A=50°,∠D=150°,求∠APD的度数,说明理由;
(2)如图3,设∠PAB=α、∠CDP=β、直接写出α、β、∠P之间的数量关系为 .
【联系拓展】如图4,直线AB∥CD,P为平面内一点,连接PA、PD.AP⊥PD,DN平分∠PDC,若∠PAN+∠PAB=∠P,运用(2)中的结论,求∠N的度数,说明理由.12组卷:1111引用:8难度:0.4