某公司分别在A,B两城生产同种产品,共100件.A城生产产品的总成本y(万元)与产品数量x(件)之间具有函数关系y=x2+20x+100,B城生产产品的每件成本为60万元.
(1)当A城生产多少件产品时,A,B两城生产这批产品成本的和最小,最小值是多少?
(2)从A城把该产品运往C,D两地的费用分别为1万元/件和3万元/件;从B城把该产品运往C,D两地的费用分别为1万元/件和2万元/件.C地需要90件,D地需要10件,在(1)的条件下,怎样调运可使A,B两城运费的和最小?
【考点】二次函数的应用.
【答案】(1)当A城生产20件产品时,A,B两城生产这批产品成本的和最小,最小值是5700元;
(2)从A城把该产品运往C地的产品数量为20件,则从A城把该产品运往D地的产品数量为0件;从B城把该产品运往C地的产品数量为70件,则从B城把该产品运往D地的产品数量为10件时,可使A,B两城运费的和最小.
(2)从A城把该产品运往C地的产品数量为20件,则从A城把该产品运往D地的产品数量为0件;从B城把该产品运往C地的产品数量为70件,则从B城把该产品运往D地的产品数量为10件时,可使A,B两城运费的和最小.
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/5/15 8:0:8组卷:81引用:2难度:0.4
相似题
-
1.2022年2月8日北京冬奥会中自由滑雪空中技巧项目备受大家关注,中国优秀运动员沿跳台斜坡AB加速加速至B处腾空而起,沿抛物线BEF运动,在空中完成翻滚动作,着陆在跳台的背面着陆坡DC.建立如图所示的平面直角坐标系,BD∥x轴,C在x轴上,B在y轴上,已知跳台的背面DC近似是抛物线y=a(x-7)2(1≤x≤7)的一部分,D点的坐标为(1,6),抛物线BEF的表达式为y=b(x-2)2+k.
(1)当k=10时,求a、b的值;
(2)在(1)的条件下,运动员在离x轴3.75m处完成动作并调整好身姿,求此时他距DC的竖直距离(竖直距离指的是运动员所在位置的点向x轴的垂线与DC的交点之间线段的长);
(3)若运动员着落点与B之间的水平距离需要在不大于7m的位置(即着落点的横坐标x满足x≤7且b<0,),求b的取值范围.发布:2024/12/23 13:30:1组卷:356引用:4难度:0.4 -
2.如图1,某公园在入园处搭建了一道“气球拱门”,拱门两端落在地面上.若将拱门看作抛物线的一部分,建立如图2所示的平面直角坐标系.拱门上的点距地面的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=a(x-h)2+k(a<0).
(1)拱门上的点的水平距离x与竖直高度y的几组数据如下:水平距离x/m 2 3 6 8 10 12 竖直高度y/m 4 5.4 7.2 6.4 4 0
(2)一段时间后,公园重新维修拱门.新拱门上的点距地面的竖直高度y(单位:m)与水平距离x(单位:m)近似满足函数关系y=-0.288(x-5)2+7.2,若记“原拱门”的跨度(跨度为拱门底部两个端点间的距离)为d1,“新拱门”的跨度为d2,则d1d2(填“>”“=”或“<”).发布:2024/12/23 11:30:2组卷:581引用:6难度:0.5 -
3.如图,已知梯形ABCD中,DC∥AB,∠A=90°,∠B=60°,AD=3,AB=
,DC=53,P是BC边上一点(P与B不重合),过点P作PQ⊥BC交AB于Q,设PB=x,四边形AQPD的面积为y.43
(1)求y与x的函数关系式;
(2)当x为何值时,y有最大值或最小值?其值等于多少?发布:2025/1/21 8:0:1组卷:31引用:1难度:0.5