2022-2023学年重庆市万州区新田中学八年级(上)期中数学试卷
发布:2024/7/26 8:0:9
一、选择题:(本大题共12个小题,每小题4分,共48分)
-
1.9的平方根是( )
组卷:1349引用:32难度:0.8 -
2.下列计算正确的是( )
组卷:434引用:60难度:0.9 -
3.在实数
,0,5,3.1415,π,3-1,144,39,0.303003…中,无理数的个数为( )227组卷:7引用:1难度:0.9 -
4.已知8a3bm÷28anb2=
ab2,m,n的值为( )27组卷:82引用:3难度:0.9 -
5.估算
的值是在( )17+3组卷:91引用:3难度:0.9 -
6.若x2+mx+16是完全平方式,则常数m的值等于( )
组卷:64引用:3难度:0.7 -
7.下列因式分解正确的是( )
组卷:279引用:3难度:0.7 -
8.使式子
有意义的实数x的取值范围是( )3x+2组卷:298引用:11难度:0.9
三、解答题:(本大题共9个小题,共86分)
-
24.对于一个四位自然数N,若N满足:它的千位数字、百位数字、十位数字之和与个位数字的差等于10,则称N是“十月数”.
例如N-9458,
∵9+4+5-8=10,
∴9458是“十月数”;
又如N=3764,
∵3+7+6-4≠10,
∴3764不是“十月数”.
(1)判断2293,8156是否是“十月数”?请说明理由;
(2)若“十月数”n=1000a+100b+10c+303(2≤a≤9,1≤b≤6,2≤c≤5且a,b,c均为整数),p是n截掉其十位数字和个位数字后的一个两位数,q是n截掉其千位数字和百位数字后的一个两位数,若p与q的和能被5整除,求出满足条件的所有数n.组卷:340引用:4难度:0.5 -
25.阅读材料:若m2-2mn+2n2-8n+16=0,求m、n的值.
解:∵m2-2mn+2n2-8n+16=0,
∴(m2-2mn+n2)+(n2-8n+16)=0,
∴(m-n)2+(n-4)2=0,而(m-n)2≥0,(n-4)2≥0,
∴(m-n)2=0且(n-4)2=0,
∴n=4,m=4.
根据你的观察,探究下面的问题:
(1)a2+b2-4a+4=0,则a=;b=;
(2)已知△ABC的三边长a、b、c,其中a2+b2-10a-26b+194=0,c=12,求△ABC的周长.组卷:78引用:1难度:0.5