2022-2023学年浙江省金华市东阳市江北中学八年级(上)第三次月考数学试卷
发布:2024/8/16 5:0:1
一、选择题
-
1.如图,为了估计一池塘岸边两点A,B之间的距离,小颖同学在池塘一侧选取了一点P,测得PA=100m,PB=90m,那么点A与点B之间的距离可能是( )
组卷:377引用:15难度:0.7 -
2.下列描述不能确定具体位置的是( )
组卷:703引用:2难度:0.7 -
3.A疫苗冷库储藏温度要求为0℃~6℃,B疫苗冷库储藏温度要求为2℃~8℃,若需要将A,B两种疫苗储藏在一起,则冷库储藏温度要求为( )
组卷:335引用:4难度:0.7 -
4.如图,点E、H、G、N共线,∠E=∠N,EF=NM,添加一个条件,不能判断△EFG≌△NMH的是( )
组卷:960引用:19难度:0.7 -
5.若函数y=(m-1)x|m|-5是一次函数,则m的值为( )
组卷:10493引用:81难度:0.9 -
6.下列命题的逆命题不正确的是( )
组卷:393引用:5难度:0.5 -
7.把一些书分给几名同学,若________;若每人分11本,则不够.依题意,设有x名同学,可列不等式9x+7<11x,则横线上的信息可以是( )
组卷:1850引用:26难度:0.7 -
8.如图,点M是∠AOB平分线上的一点,点P、点Q分别在射线OA、射线OB上,满足OP=2OQ,若△OMP的面积是2,则△OQM的面积是( )
组卷:643引用:6难度:0.5
三、解答题
-
23.问题背景:如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,E,F分别是BC,CD上的点,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系,小王同学探究此问题的方法是,延长FD到点G.使DG=BE.连接AG,先证明△ABE≌△ADG,再证明△AEF≌△AGF,可得出结论,他的结论应是 ;
探索延伸:如图2,若在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由;12
实际应用:如图3,在某次军事演习中,舰艇甲在指挥中心(O处)北偏西30°的A处,舰艇乙在指挥中心南偏东70°的B处,并且两舰艇到指挥中心的距离相等,接到行动指令后,舰艇甲向正东方向以70海里/小时的速度前进,舰艇乙沿北偏东50°的方向以90海里/小时的速度,前进2小时后,指挥中心观测到甲、乙两舰艇分别到达E,F处,且两舰艇之间的夹角为70°,试求此时两舰艇之间的距离.组卷:5473引用:9难度:0.3 -
24.在平面直角坐标系xOy中,直线l:y=kx+1(k≠0)与直线x=k,直线y=-k分别交于点A,B,直线x=k与直线y=-k交于点C.
(1)求直线l与y轴的交点坐标;
(2)横、纵坐标都是整数的点叫做整点,记线段AB,BC,CA围成的区域(不含边界)为W.
①当k=2时,结合函数图象,求区域W内的整点个数;
②若区域W内没有整点,直接写出k的取值范围.组卷:4369引用:19难度:0.6