2022-2023学年河北省保定市雄县七年级(下)期末数学试卷
发布:2024/6/29 8:0:10
一、选择题(本大题有14个小题,每小题3分,共42分.在每小题给出的四个选项中,只有一项是符合题目要求的)
-
1.下列各数中是无理数的是( )
组卷:8引用:1难度:0.8 -
2.如图,由AD∥BC,可以得到( )
组卷:21引用:1难度:0.5 -
3.若点(-2,a)向下平移3个单位长度后正好落在x轴上,则a的值是( )
组卷:104引用:1难度:0.8 -
4.解以下两个方程组:①
,②x=3y-52x-4y=2时,较为简便的方法是( )2x+3y=55x-3y=9组卷:94引用:1难度:0.5 -
5.已知m<n,则下列不等式错误的是( )
组卷:18引用:1难度:0.7 -
6.要调查下列问题,需要进行全面调查的是( )
组卷:5引用:1难度:0.8 -
7.如图,点E在直线DF上,已知∠CEF=52°,∠ABE=108°,若要使得AC∥DF,则∠BEC=( )
组卷:31引用:1难度:0.6 -
8.已知(x-1)2=4,则x的值是( )
组卷:105引用:3难度:0.9
三、解答题(本大题有7个小题,共65分.解答应写出文字说明、证明过程或演算步骤)
-
24.为进一步落实“双减”,增进“双增”,友谊中学要购买若干个足球和篮球,已知购买2个足球和1个篮球共需110元;购买1个足球和2个篮球共需145元.
(1)求1个足球和1个篮球的价格各是多少元;
(2)学校准备购买篮球和足球共20个,每种球都要买,且购买金额不能超过600元,请你帮该学校设计购买方案;
(3)在(2)的前提下,若要求购买的费用最少,请你选择一种最佳的购买方案,并通过计算说明理由.组卷:47引用:2难度:0.5 -
25.已知AB∥CD,直线EF和直线AB,CD分别交于点A,C,并把平面分成六个区域(如图甲),点P是六个区域中(不在直线AB,CD,EF上)的任意一点,连接PA,PC.
(1)图乙是点P在区域⑤的情况,嘉嘉猜想出∠APC,∠A,∠C之间的数量关系,请帮她完善证明过程;
嘉嘉猜想的结论是:∠APC=∠A+∠C.
证明:过点P作PQ∥AB,
∴∠1=∠( ).
∵AB∥CD,PQ∥AB,
∴CD∥PQ ( ).
∴∠2=∠( ).
∴∠1+∠2=.
又∠1+∠2=∠APC,
∴∠APC=∠A+∠C.
(2)图丙是点P在区域②的情况,那么(1)中的结论还成立吗?请加以证明;
(3)请你探索点P在①③④⑥区域时的情况,并直接写出∠APC,∠A,∠C之间的数量关系.组卷:83引用:1难度:0.5