2023年海南省海口中学高考数学二模试卷(A卷)
发布:2024/7/23 8:0:8
一、单项选择题(本题共8小题,每小题5分,共40分)
-
1.设复数z=i(2-i),则|z|=( )
组卷:234引用:9难度:0.9 -
2.已知集合A={0,1,2},B={x∈N|0<x<3},则A∪B=( )
组卷:347引用:9难度:0.8 -
3.在平面直角坐标系xOy中,角α的顶点与坐标原点O重合,始边与x轴的非负半轴重合,其终边过点P(4,3),则
的值为( )tan(α+π4)组卷:311引用:10难度:0.7 -
4.函数f(x)=
的大致图象为( )6x-6-x|4x2-1|组卷:128引用:5难度:0.6 -
5.将数据1,3,5,7,9这五个数中随机删去两个数,则所剩下的三个数的平均数大于5的概率为( )
组卷:293引用:4难度:0.7 -
6.设|
|=2,|a|=b,夹角为30°,则|3+a|等于( )b组卷:35引用:1难度:0.5 -
7.若函数f(x)=
在R上是单调函数,则a的取值可以是( )-x2+2a,x≤-1ax+4,x>-1组卷:536引用:4难度:0.7
四、解答题(本题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤)
-
21.垃圾是人类日常生活和生产中产生的废弃物,由于排出量大,成分复杂多样,且具有污染性,所以需要无害化、减量化处理.某市为调查产生的垃圾数量,采用简单随机抽样的方法抽取20个县城进行了分析,得到样本数据(xi,yi)(i=1,2,……,20),其中xi和yi分别表示第i个县城的人口(单位:万人)和该县年垃圾产生总量(单位:吨),并计算得
=80,20∑i=1xi=4000,20∑i=1yi(xi20∑i=1)2=80,-x(yi-20∑i=1)2=8000,y(xi20∑i=1)(yi--x)=700.y
(1)请用相关系数说明该组数据中y与x之间的关系可用线性回归模型进行拟合;
(2)求y关于x的线性回归方程;
(3)某科研机构研发了两款垃圾处理机器,如表是以往两款垃圾处理机器的使用年限(整年)统计表:使用年限
台数
款式1年 2年 3年 4年 合计 甲款 5 20 15 10 50 乙款 15 20 10 5 50
参考公式:相关系数r=.n∑i=1(xi-x)(yi-y)n∑i=1(xi-x)2n∑i=1(yi-y)2
对于一组具有线性相关关系的数据(xi,yi)(i=1,2,……,n),其回归直线的斜率和截距的最小二乘估计分别为:̂y=̂bx+̂a=̂b,n∑i=1(xi-x)(yi-y)n∑i=1(xi-x)2=̂a-yx.̂b组卷:1引用:2难度:0.5 -
22.已知函数f(x)=xlnx+(a-1)x,a∈R.
(Ⅰ)当a=2时,求曲线y=f(x)在点(1,f(1))处的切线方程;
(Ⅱ)求函数f(x)在区间[1,e]上的最小值;
(Ⅲ)求证:“a≥0”是“函数f(x)在区间(e,+∞)上单调递增”的充分不必要条件.组卷:209引用:4难度:0.3