2023年广东省深圳市“桃李综合能力杯”数学竞赛试卷(六年级)
发布:2024/8/3 8:0:9
一、填空题(此部分13小题,每小题6分,共78分)
-
1.计算:16×21
×16=。12-112组卷:22引用:1难度:0.8 -
2.在2名男生和4名女生中挑选出一男一女两名主持人,有 种组合。
组卷:12引用:1难度:0.8 -
3.如图所示,在一个等边三角形三边上各取三等分点,连接而成的阴影六边形为正六边形。若该正六边形的面积为120,这个等边三角形的面积为 。
组卷:22引用:1难度:0.8 -
4.使方程两边左右相等的未知数的值叫做方程的解,例如:关于x的方程2x+7=17的解为x=5。若x=2是关于x的方程ax+6=2ax的解,则a=。
组卷:19引用:1难度:0.5 -
5.一个班不足50人,其中男生人数是女生人数的
,这个班最多有 人。67组卷:10引用:1难度:0.5 -
6.小桃和小李各买了一个糖果盲盒,打开之后发现两个盲盒里面有总数相等的奶糖和水果糖两种糖,小桃的盲盒中奶糖和水果糖数量之比是2:3,小李的盲盒中奶糖和水果糖数量之比是1:2,两个盲盒中的奶糖总数与水果糖总数之比是 。
组卷:21引用:1难度:0.8
二.解答题(此部分5小题,第14题13分,第15题14分,第16~18小题每小题13分,共72分)
-
17.回答下列问题,并说明理由:
(1)将一个200×199的长方形划分为若干个边长为整数的正方形,则边长为奇数的正方形至少有多少个?
(2)将一个2022×2023的长方形划分为若干个边长为整数的正方形,则边长为奇数的正方形至少有多少个?组卷:6引用:1难度:0.5 -
18.一个图由若干个点和若干条连接这些点的线组成。如果从图中某点出发共有n条连接线就称n为该点的桃李值,例如,在如图中,点A出发有3条连接线,则点A的桃李值为3;点B出发有2条线,则点B的桃李值就为2;……
(1)如果一个图所有点的桃李值之和为2024,求这个图连接线的数量;
(2)证明:对任意的图,桃李值为奇数的点必为偶数个;
(3)一个图,若它的每个点的桃李值均不超过3,且图中任意两个点或者有直接的连接线,或者总存在另外一个点与这两个点都有连接线。请问这个图中至多有多少个点?当点数最多时,请画出一个这样的图。组卷:4引用:1难度:0.5