2022-2023学年新疆乌鲁木齐三十六中高一(下)期末数学试卷
发布:2024/6/14 8:0:9
一、选择题(本题共计9小题,每题3分,共计27分)
-
1.化简
-AC+BD-CD得( )AB组卷:249引用:58难度:0.9 -
2.如图,在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=1,则AC1与平面A1B1C1D1所成角的正弦值为( )
组卷:613引用:23难度:0.9 -
3.设b、c表示两条直线,α、β表示两个平面,则下列命题正确的是( )
组卷:118引用:4难度:0.7 -
4.已知
=(2,3),OA=(-3,y),若OB⊥OA,则|OB|等于( )AB组卷:163引用:7难度:0.7 -
5.在△ABC中,内角A,B,C所对的边分别是a,b,c.已知A=45°,a=6,b=
,则B的大小为( )32组卷:959引用:32难度:0.7 -
6.已知
,则tanθ的值为( )sinθ+2cosθsinθ-cosθ=2组卷:701引用:3难度:0.9 -
7.在正方体ABCD-A1B1C1D1中,E为线段A1B1的中点,则异面直线D1E与BC1所成角的余弦值为( )
组卷:119引用:7难度:0.7
四、解答题(本题共计5小题,每道题9分,共计45分)
-
20.如图,AB是⊙O的直径,PA垂直于⊙O所在的平面,C是圆周上不同于A,B的一动点.
(1)证明:BC⊥面PAC;
(2)若PA=AC=1,AB=2,求直线PB与平面PAC所成角的正切值.组卷:174引用:4难度:0.5 -
21.如图,三棱柱ABC-A1B1C1中,A1A⊥平面ABC,∠ACB=90°,AC=CB=CC1=2,M是AB的中点.
(1)求证:平面A1CM⊥平面ABB1A1;
(2)求点M到平面A1CB1的距离组卷:33引用:2难度:0.6