试卷征集
加入会员
操作视频
当前位置: 试卷中心 > 试卷详情

2022-2023学年重庆市綦江区打通中学七年级(上)第一次定时作业数学试卷

发布:2024/8/30 21:0:9

一、选择題(本大题12个小题,每小题4分,共48分)在每个小题的下面,都给出了代号为A、B、C、D的四个答案,其中只有一个是正确的,请将正确答案填在答题卷对应的方框中.

  • 1.-2的相反数是(  )

    组卷:4766引用:1083难度:0.9
  • 2.如果向东走4千米记为+4千米,那么走了-2千米表示(  )

    组卷:23引用:3难度:0.9
  • 3.下列四个数中,最大的数是(  )

    组卷:160引用:2难度:0.9
  • 4.在数轴上,与表示数-5的点的距离是2的点表示的数是(  )

    组卷:7917引用:34难度:0.9
  • 5.在数轴上,原点及原点右边的点表示的数是(  )

    组卷:1445引用:108难度:0.9
  • 6.下列计算正确的是(  )

    组卷:11引用:1难度:0.7
  • 7.现有以下五个说法:①0没有相反数;②若两个数互为相反数,则它们相乘的积等于-1;③负数的绝对值是它的倒数;④绝对值等于其本身的有理数是零;⑤几个有理数相乘,负因数个数为奇数,则乘积为负数.其中正确的有(  )

    组卷:81引用:1难度:0.5
  • 8.为计算简便,把(-2.4)-(-4.7)-(+0.5)+(-3.5)写成省略加号的和的形式,正确的是(  )

    组卷:760引用:15难度:0.8

四、解答题:(本大题7个小题,每小题10分,共70分)解答时每小题必须给出必要的演算过程或推理步骤,请将解答过程书写在答题卷中对应的位置上.

  • 24.定义:对于一个两位自然数,如果它的个位和十位上的数字均不为零,且它正好等于其个位和十位上的数字的和的n倍(n为正整数),我们就说这个自然数是一个“n喜数”.例如:24就是一个“4喜数”,因为24=4×(2+4);25就不是一个“n喜数”,因为25≠n(2+5).
    (1)判断44和72是否是“n喜数”?请说明理由;
    (2)请求出所有的“7喜数”之和.

    组卷:931引用:7难度:0.7
  • 25.当x>0时,
    x
    |
    x
    |
    =
    x
    x
    =
    1
    ;当x<0时,
    x
    |
    x
    |
    =
    x
    -
    x
    =
    -
    1
    .用这个结论解决下列问题:
    (1)已知a,b是有理数,当ab≠0时,求
    a
    |
    a
    |
    +
    b
    |
    b
    |
    的值;
    (2)已知a,b,c是有理数,当abc≠0时,求
    a
    |
    a
    |
    +
    b
    |
    b
    |
    +
    c
    |
    c
    |
    的值;
    (3)已知a,b,c是有理数,a+b+c=0,abc<0,求
    b
    +
    c
    |
    a
    |
    +
    a
    +
    c
    |
    b
    |
    +
    a
    +
    b
    |
    c
    |
    的值.

    组卷:385引用:1难度:0.5
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正