2023年西藏林芝第二高级中学高考数学四模试卷(理科)
发布:2024/7/26 8:0:9
一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的)
-
1.设集合A={x|-1≤x<3},B={1,2,3,4},则A∩B=( )
组卷:305引用:7难度:0.8 -
2.已知复数
,则z=2-i1+i=( )z-z组卷:34引用:2难度:0.8 -
3.已知命题p:∀x>0,总有(x+1)ex>1,则¬p为( )
组卷:570引用:17难度:0.9 -
4.已知向量
=(1,2),a=(-2,t),若b∥a,则t=( )b组卷:850引用:17难度:0.8 -
5.已知函数
,则f(f(2))=( )f(x)=2x2+1,x≤12x-2,x>1组卷:94引用:4难度:0.8 -
6.执行如图所示的算法框图,则输出的l的值为( )
组卷:14引用:4难度:0.7 -
7.
的图像大致是( )f(x)=exx2组卷:74引用:3难度:0.8
三、解答题(共70分,解答应写出文字说明、证明过程或演算步骤.第17-21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答.)
-
22.在平面直角坐标系xOy中,曲线C的参数方程为
(α为参数),以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系,直线l的极坐标方程是ρcosθ-ρsinθ-3=0.x=2+4cosα,y=4sinα
(1)求曲线C的直角坐标方程和直线l的普通方程;
(2)若P(0,-3),直线l与曲线C交于A,B两点,M是线段AB的中点,求的值.|PM||PA|+|PB|组卷:189引用:9难度:0.6 -
23.已知函数f(x)=|2x-1|+|x|-x+2.
(1)求不等式f(x)≥3的解集;
(2)设函数y=f(x)的值域为M,a,b∈M,试比较ab+2与2a+b的大小.组卷:14引用:4难度:0.5