试卷征集
加入会员
操作视频
当前位置: 试卷中心 > 试卷详情

2022-2023学年四川省绵阳市涪城区南山中学高一(下)月考数学试卷(6月份)

发布:2024/7/19 8:0:9

一、单选题(本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.)

  • 1.复数z1,z2在复平面内对应的点关于虚轴对称,若z1=1-2i,i为虚数单位,则z2=(  )

    组卷:62引用:2难度:0.8
  • 2.已知向量
    a
    b
    的夹角为
    2
    π
    3
    ,且
    |
    a
    |
    =
    3
    |
    b
    |
    =
    4
    ,则
    |
    a
    +
    2
    b
    |
    =(  )

    组卷:214引用:6难度:0.8
  • 3.下列四个函数中,以π为最小正周期,且是奇函数的是(  )

    组卷:48引用:2难度:0.5
  • 4.如图,在正方体ABCD-A1B1C1D1中,点E,F分别为棱AB和AA1上的中点,则异面直线EF与BD所成角的大小为(  )

    组卷:276引用:7难度:0.8
  • 5.已知函数
    f
    x
    =
    A
    sin
    ωx
    +
    φ
    ω
    0
    |
    φ
    |
    π
    2
    的部分图象如图所示,则下列说法正确的是(  )

    组卷:98引用:5难度:0.6
  • 6.已知α,β∈(0,
    π
    2
    ),sinα=
    5
    5
    ,cosβ=
    1
    10
    ,则α-β=(  )

    组卷:87引用:2难度:0.7
  • 7.多面体ABCD-A1B1C1D1为正四棱台,其中上底面与下底面的面积之比为1:16,棱台的高为棱台上底面边长的3倍.已知棱台的体积为567m3,则该棱台的表面积约为(  )(参考数据
    5
    2
    .
    2
    3
    1
    .
    7
    2
    1
    .
    4

    组卷:35引用:2难度:0.6

四、解答题(本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.)

  • 21.如图,在△ABC中,角A,B,C所对的边为a,b,c,已知csinC+bsinB=asinA+csinB,D是边BC上的点,满足
    CD
    =
    2
    DB
    ,AD=2.
    (1)求角A大小;
    (2)求三角形面积S的最大值.

    组卷:47引用:2难度:0.6
  • 22.几何体E-ABCD是四棱锥,△ABD为正三角,BC=CD=2,∠BCD=120°,M为线段AE的中点.
    (1)求证:DM∥平面BEC;
    (2)线段EB上是否存在一点N,使得D,M,N,C四点共面?若存在,请求出
    BN
    BE
    的值;若不存在,并说明理由.

    组卷:463引用:6难度:0.5
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正