2022-2023学年山东省烟台市招远市六年级(下)期末数学试卷(五四学制)
发布:2024/7/17 8:0:9
一.选择题(本大题共10个小题,每小题3分,满分30分)
-
1.下列调查中,适宜采用普查的是( )
组卷:165引用:4难度:0.5 -
2.汽车以每小时100千米的速度匀速行驶,行驶的路程随时间的变化而变化,在这个变化过程中,自变量是( )
组卷:1868引用:7难度:0.9 -
3.下列说法中,错误的是( )
①若∠1+∠2+∠3=180°,则这三个角互补
②若线段AC=CB,则点C是线段AB的中点
③一个角的补角一定是锐角
④若∠α与∠β互余,则∠α的补角比∠β大90°组卷:589引用:3难度:0.5 -
4.某校六年级学生详细记录了招远市2023年5月份的天气质量情况,打算利用统计图描述天气的变化情况,他应该选择( )
组卷:54引用:2难度:0.8 -
5.泰勒斯被誉为古希腊及西方第一个自然科学家和哲学家,据说“两条直线相交,对顶角相等”就是泰勒斯首次发现并论证的.论证“对顶角相等”使用的依据是( )
组卷:2097引用:17难度:0.5 -
6.汽车油箱中有汽油20L.如果不再加油,那么油箱中的油量y(单位:L)随行驶路程x(单位:km)的增加而减少,平均耗油量为0.1L/km.当0≤x≤200时,y与x的表达式为( )
组卷:194引用:2难度:0.6 -
7.如图,O是直线AB上一点,OE平分∠BOD,OF⊥OE,∠D=120°,添加一个条件,仍不能判定AB∥CD,添加的条件可能是( )
组卷:351引用:2难度:0.5 -
8.随着5G信号的快速发展,5G无人物品派送车已应用于实际生活中,图1所示为无人物品派送车前往派送点的情景.该车从出发点沿直线路径到达派送点,在派送点停留一段时间后匀速返回出发位置,其行驶路程s与所用时间t的关系如图2所示(不完整).下列分析正确的是( )
组卷:70引用:2难度:0.5
三.解答题(本大题共9个小题,共72分.请在答题卡指定区域内作答.)
-
24.某洗衣机在洗涤衣服时,一次经历了进水、清洗、排水、脱水四个连续过程,已知洗衣机的排水速度为每分钟16升,脱水用时2分钟.其中进水、清洗、排水时洗衣机中的水量y(升)与洗衣机工作时间x(分钟)之间的关系如图所示.根据图象解答下列问题:
(1)上述图象反映了两个变量之间的关系,自变量是 ,因变量是 ;
(2)清洗时,洗衣机中的水量是 升,一次清洗所用的时间是 分钟;
(3)洗衣机进水的平均速度是多少?
(4)求19分钟时,洗衣机中剩下的水量是多少?
(5)洗衣机在洗涤衣服时,一次经历了进水、清洗、排水、脱水四个连续过程共需要多长时间?
(6)求排水时段y与x之间的关系式.组卷:279引用:2难度:0.5 -
25.课题学习:平行线的“等角转化”功能.
(1)阅读理解:如图1,已知点A是BC外一点,连接AB、AC,求∠B+∠BAC+∠C的度数.阅读并补充下面推理过程.
解:如图2过点A作ED∥BC,所以∠B=,∠C=,
又因为∠EAB+∠BAC+∠DAC=180°,
所以∠B+∠BAC+∠C=180°.
解题反思:从上面的推理过程中,我们发现平行线具有“等角转化”的功能,将∠BAC、∠B、∠C“凑”在一起,得出角之间的关系,使问题得以解决.
(2)方法运用:如图3,已知AB∥CD,求∠B+∠BPD+∠D的度数;
(3)深化拓展:已知直线AB∥CD,点P为平面内一点,连接PA、PD.
①如图4,已知∠A=50°,∠D=140°,请直接写出∠APD的度数;
②如图5,请判断∠PAB、∠CDP、∠APD之间的数量关系,并说明理由.组卷:301引用:3难度:0.5