2022-2023学年浙江省绍兴市越城区蕺山外国语学校高一(上)期中数学试卷
发布:2024/9/2 12:0:9
一、单项选择题(本大题共8小题,每小题3分,共24分.在每小题给出的四个选项中,只有一项是符合题目要求的.)
-
1.设集合A={3,5},集合B={1,2,4,5},则集合A∪B=( )
组卷:53引用:4难度:0.8 -
2.命题“2x2-5x-3<0”的一个充要条件是( )
组卷:137引用:4难度:0.9 -
3.函数
的定义域为( )y=1-xx组卷:11引用:2难度:0.8 -
4.在下列函数中,函数y=|x|表示同一函数的( )
组卷:2884引用:18难度:0.9 -
5.已知f(x)=ax+bx3+2022,其中a,b为常数,若f(-2)=2,则f(2)=( )
组卷:76引用:3难度:0.7 -
6.已知x>0,y>0,且
,则x+2y的最小值为( )2y+1x=1组卷:411引用:6难度:0.8 -
7.若偶函数f(x)在(-∞,-1]上是增函数,则下列关系式中成立的是( )
组卷:185引用:14难度:0.9
四、解答题(本大题共6小题,第17-20题每小题8分,第21、22题每小题8分共52分.)
-
21.2016年,某厂计划生产25吨至45吨的某种产品,已知生产该产品的总成本y(万元)与总产量x(吨)之间的关系可表示为
.y=x210-2x+90
(1)若该产品的出厂价为每吨6万元,求该厂2016年获得利润的最大值.
(2)求该产品每吨的最低生产成本;组卷:18引用:3难度:0.7 -
22.已知定义在(-1,1)上的奇函数
,且f(x)=ax-bx2+1.f(-12)=-25
(1)求函数f(x)的解析式;
(2)判断f(x)的单调性(并用单调性定义证明);
(3)解不等式f(3t)+f(2t-1)<0.组卷:75引用:7难度:0.5