2022-2023学年湖南省常德市高一(下)期末数学试卷
发布:2024/7/6 8:0:9
一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的。
-
1.设集合U={1,2,3,4,5},M={1,3,5},N={2,3,4},则M∩(∁UN)等于( )
组卷:171引用:4难度:0.8 -
2.已知复数z满足(4+3i)z=1+2i,则|z|=( )
组卷:43引用:4难度:0.8 -
3.已知角α的顶点在坐标原点,始边在x轴非负半轴上,点P(-6,-8)为角α终边上一点,则cosα=( )
组卷:213引用:5难度:0.7 -
4.在正方体ABCD-A1B1C1D1中,E,F分别是线段BC,C1D的中点,则异面直线A1B,EF所成角余弦值是( )
组卷:116引用:5难度:0.7 -
5.指数函数
的图象如图所示,则二次函数y=ax2+bx图象可能是( )y=(ba)x组卷:118引用:6难度:0.8 -
6.已知平面向量
,则a=(4,2),b=(1,3)在a方向上的投影向量是( )b组卷:79引用:5难度:0.7 -
7.已知实数
,则( )a=log23,b=log34,c=tan4π3组卷:35引用:3难度:0.5
四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.
-
21.如图,在四棱锥P-ABCD中,底面ABCD为正方形,PA⊥面ABCD,AE⊥PB,F为棱PC上一动点.
(1)平面AEF与平面PBC是否相互垂直?如果垂直,请证明;如果不垂直,请说明理由;
(2)若E为PB的中点,求二面角E-AC-B的余弦值.组卷:88引用:3难度:0.4 -
22.已知函数
.f(x)=log22+x2-x
(1)判断函数f(x)的单调性并加以证明;
(2)若函数在区间g(x)=|f(x)+4f(x)-b|+b上的最大值为5,求实数b的取值范围.[23,3017]组卷:61引用:3难度:0.5