试卷征集
加入会员
操作视频
当前位置: 试卷中心 > 试卷详情

2022-2023学年湖南师大附中博才实验中学八年级(下)期末数学试卷

发布:2024/6/6 8:0:9

一、单选题(10×3=30分)

  • 1.下列各图表示y是x的函数的图象是(  )

    组卷:684引用:4难度:0.6
  • 2.一元二次方程x2-4x=5的二次项系数、一次项系数和常数项分别是(  )

    组卷:497引用:6难度:0.5
  • 3.某校八年级进行了三次1000米跑步测试,甲、乙、丙、丁四名同学成绩的方差s2分别为
    s
    2
    =3.8,
    s
    2
    =5.5,
    s
    2
    =10,
    s
    2
    =6,那么这四名同学跑步成绩最稳定的是(  )

    组卷:103引用:6难度:0.7
  • 4.如图,在平行四边形ABCD中,若∠B=2∠A,则∠C的度数为(  )

    组卷:181引用:4难度:0.7
  • 5.下列各组数中,能构成勾股数的是(  )

    组卷:182引用:4难度:0.5
  • 6.已知m是方程x2-3x-1=0的一个根,则代数式2m2-6m的值为(  )

    组卷:778引用:8难度:0.6
  • 7.下列命题是真命题的是(  )

    组卷:176引用:5难度:0.7
  • 8.我国古代数学家杨辉的《田亩比数乘除减法》中记载:“直田积八百六十四步,只云阔不及长一十二步,问阔及长各几步?”翻译成数学问题是:一块矩形田地的面积为864平方步,它的宽比长少12步.如果设宽为x步,则可列出方程(  )

    组卷:431引用:15难度:0.5

三、解答题(6+6+6+8+8+9+9+10+10=72分)

  • 24.在平面直角坐标系xOy中,点P的坐标为(x1,y1),点Q的坐标为(x2,y2),且x1≠x2,y1≠y2,若P,Q为某正方形的两个顶点,且该正方形的边均与某条坐标轴平行(含重合),则称P,Q互为“正方形点”(即点P是点Q的“正方形点”,点Q也是点P的“正方形点”).下图是点P,Q互为“正方形点”的示意图.
    (1)已知点A的坐标是(2,3),下列坐标中,与点A互为“正方形点”的坐标是
    .(填序号)
    ①(1,2);②(-1,5);③(3,2).
    (2)若点B(1,2)的“正方形点”C在y轴上,求直线BC的表达式;
    (3)点D的坐标为(-1,0),点M的坐标为(2,m),点N是线段OD上一动点(含端点),若点M,N互为“正方形点”,求m的取值范围.

    组卷:459引用:2难度:0.3
  • 25.已知矩形ABCD中,AB=4,AD=6,点P是边AD的中点.
    (1)如图1,连接BP并延长,与CD的延长线交于点F,问:线段CF上是否存在点Q,使得△PFQ为等腰三角形,若存在,请求出DQ的长,若不存在,请说明理由.
    (2)如图2,把矩形ABCD沿直线MN折叠,使点B落在点D上,直线MN与AD、BD、BC的交点分别为M、H、N,求折痕MN的长.
    (3)如图3,在(2)的条件下,以点A为原点,分别以矩形ABCD的两条边AD、AB所在的直线为x轴和y轴建立平面直角坐标系,若点R在x轴上,在平面内是否存在点S,使以R、M、N、S为顶点的四边形是菱形?若存在,请直接写出点S的坐标;若不存在,请说明理由.
    (4)如图4,若点E为CD边上的一个动点,连结PE,以PE为边向下方作等边△PEG,连结AG,则AG的最小值是
    .(请直接写出答案)

    组卷:973引用:2难度:0.1
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正