试卷征集
加入会员
操作视频
当前位置: 试卷中心 > 试卷详情

2022-2023学年河北省邯郸市部分学校高三(下)开学数学试卷

发布:2024/7/6 8:0:9

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.

  • 1.已知集合A={x|0<x<1},B={x|log2x<1},则(  )

    组卷:30引用:2难度:0.8
  • 2.已知空间四个点,则“这四个点中有三点在同一直线上”是“这四个点在同一平面内”的(  )

    组卷:22引用:3难度:0.7
  • 3.若双曲线x2-m2y2=λ(λ≠0)的两条渐近线互相垂直,则m=(  )

    组卷:29引用:2难度:0.7
  • 4.已知
    sinα
    =
    1
    2
    +
    cosα
    ,则
    cos
    π
    -
    2
    α
    sin
    α
    +
    π
    4
    =(  )

    组卷:52引用:2难度:0.7
  • 5.已知复数z的实部和虚部均为整数,则满足
    |
    z
    -
    1
    |
    |
    z
    z
    |
    的复数z的个数为(  )

    组卷:106引用:2难度:0.5
  • 6.函数f(x)=xsin2πx-1在区间[-3,3]上的零点个数为(  )

    组卷:44引用:2难度:0.5
  • 7.将函数f(x)的图象向右平移1个单位长度后,再向上平移4个单位长度,所得函数图象与曲线y=4x关于直线x=1对称,则
    f
    -
    1
    2
    =(  )

    组卷:45引用:2难度:0.7

四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.

  • 21.设函数f(x)=ae2x-(2x+1)ex,a∈R.
    (1)当a=1时,求曲线y=f(x)在点(0,f(0))处的切线方程;
    (2)若a<0,且f(x)在区间(-2,+∞)上有极值,求实数a的取值范围.

    组卷:15引用:2难度:0.5
  • 22.在平面直角坐标系xOy中,点P到点F(1,0)的距离比到y轴的距离大1,记点P的轨迹为曲线C.
    (1)求C的方程;
    (2)设过点F且不与x轴重合的直线l与C交于A,B两点,求证:在曲线C上存在点P,使得直线PA,OP,PB的斜率成等差数列.

    组卷:16引用:2难度:0.6
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正