2022-2023学年广东省深圳市光明区八年级(下)期末数学试卷
发布:2024/6/21 8:0:10
一、选择题(本大题共10小题,每小题3分,共30分,每小题有四个选项,其中只有一项是正确的)
-
1.下列四幅作品分别代表“清明”、“谷雨”、“白露”、“大雪”,其中是中心对称图形的是( )
组卷:354引用:12难度:0.9 -
2.要使分式
有意义,a应满足的条件是( )8a+3组卷:576引用:3难度:0.7 -
3.如图,在▱ABCD中,∠A=140°,则∠D的度数为( )
组卷:319引用:1难度:0.7 -
4.若a>b,则下列结论不成立的是( )
组卷:438引用:4难度:0.7 -
5.下列各式从左到右的变形属于因式分解的是( )
组卷:629引用:2难度:0.9 -
6.点M(3,-1)先向左平移3个单位长度,再向上平移2个单位长度得到的点的坐标是( )
组卷:297引用:2难度:0.6 -
7.如图,三座商场分别坐落在A、B、C所在位置,现要规划一个地铁站,使得该地铁站到三座商场的距离相等,该地铁站应建在( )
组卷:517引用:8难度:0.5
三、解答题(本大题共7小题,共55分)
-
21.如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,△ABC的顶点均在格点上,在建立平面直角坐标系后,点C的坐标为(-2,-1).
(1)将△ABC向上平移6个单位得到△A1B1C1,画出△A1B1C1;
(2)以(0,-1)为对称中心,画出△ABC关于该点对称的△A2B2C2;
(3)经探究发现,△A1B1C1和△A2B2C2成中心对称,则对称中心坐标为 ;
(4)已知点P为x轴上不同于O、D的动点,当PA+PC=时,∠OPC=∠DPA.组卷:702引用:3难度:0.5 -
22.问题情境:在学习《图形的平移和旋转》时,数学兴趣小组遇到这样一个问题:如图1,点D为等边△ABC的边BC上一点,将线段AD绕点A逆时针旋转60°得到线段AE,连接CE.
(1)【猜想证明】试猜想BD与CE的数量关系,并加以证明;
(2)【探究应用】如图2,点D为等边△ABC内一点,将线段AD绕点A逆时针旋转60°得到线段AE,连接CE,若B、D、E三点共线,求证:EB平分∠AEC;
(3)【拓展提升】如图3,若△ABC是边长为2的等边三角形,点D是线段BC上的动点,将线段AD绕点D顺时针旋转60°得到线段DE,连接CE.点D在运动过程中,△DEC的周长最小值=(直接写答案).组卷:1696引用:5难度:0.1