试卷征集
加入会员
操作视频
当前位置: 试卷中心 > 试卷详情

2022-2023学年江苏省镇江市四校(扬中二中、句容实验高中等)高一(下)联考数学试卷(5月份)

发布:2024/5/16 8:0:9

一、单选题:本大题共8小题,每小题5分,共计40分.在每小题给出的选项中,只有一项符合题目要求,错选或多选得0分.

  • 1.平面向量
    a
    b
    的夹角为60°,
    a
    =(2,0),|
    b
    |=1,则|
    a
    +2
    b
    |=(  )

    组卷:2666引用:143难度:0.9
  • 2.如图所示,一个水平放置的四边形OABC的斜二测画法的直观图是边长为2的正方形O'A'B'C',则原四边形OABC的面积是(  )

    组卷:407引用:12难度:0.7
  • 3.在△ABC中,已知D是AB边上一点,若
    AD
    =
    2
    DB
    CD
    =
    1
    3
    CA
    +
    λ
    CB
    ,则λ=(  )

    组卷:237引用:4难度:0.7
  • 4.欧拉公式e=cosθ+isinθ把自然对数的底数e、虚数单位 i、三角函数联系在一起,充分体现了数学的和谐美,被誉为“数学中的天桥”,若复数z满足(2e+i)•z=i,则|z|=(  )

    组卷:25引用:2难度:0.8
  • 5.在△ABC中,内角A,B,C所对应的边分别是a,b,c,若a=3,
    b
    =
    13
    ,B=60°,则c=(  )

    组卷:162引用:3难度:0.8
  • 6.已知正方体AC1的棱长为1,点P是平面AA1D1D的中心,点Q是平面A1B1C1D1的对角线B1D1上一点,且PQ∥平面AA1B1B,则线段PQ的长为(  )

    组卷:21引用:2难度:0.7
  • 7.已知非零向量
    AB
    AC
    满足
    AB
    |
    AB
    |
    +
    AC
    |
    AC
    |
    BC
    =
    0
    ,且
    AB
    |
    AB
    |
    AC
    |
    AC
    |
    =
    1
    2
    ,则△ABC为(  )

    组卷:142引用:4难度:0.7

四、解答题:(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)

  • 21.如图,在四棱锥P-ABCD中,PA⊥面ABCD,AB=4,BC=3,AD=5,PA=4,∠DAB=∠ABC=90°,E是CD的中点.
    (1)求异面直线BC与PD所成角的正切值;
    (2)求证:CD⊥PE.

    组卷:658引用:6难度:0.5
  • 22.如图,我国南海某处的一个圆形海域上有四个小岛,小岛B与小岛A、小岛C相距都为5 nmile,与小岛D相距为
    3
    5
    nmile
    .∠BAD为钝角,且
    sin
    A
    =
    3
    5

    (1)求小岛A与小岛D之间的距离和四个小岛所形成的四边形的面积;
    (2)记∠BDC为α,∠CBD为β,求sin(2α+β)的值.

    组卷:348引用:14难度:0.4
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正