2023-2024学年吉林省长春市东北师大附中高一(上)期中数学试卷
发布:2024/9/25 1:0:2
一、单项选择题(本题共8小题,每小题4分,共32分.在每小题给出的四个选项中,只有一项是符合题目要求的)
-
1.已知集合U=R,集合A={x|x2-x-6>0},B={x|x>2},则A∩B=( )
组卷:65引用:3难度:0.9 -
2.“x≥1”是“x>1”成立的( )
组卷:118引用:4难度:0.9 -
3.下列各组函数是同一函数的是( )
组卷:1074引用:12难度:0.9 -
4.下列四个命题中,既是全称量词命题又是真命题的是( )
组卷:139引用:4难度:0.8 -
5.已知f(x)=ax2+bx是定义在[a-1,2a]上的偶函数,那么a+b的值是( )
组卷:13120引用:56难度:0.7 -
6.定义域为R的函数f(x)满足条件:①∀x1,x2>0,恒有[f(x1)-f(x2)](x1-x2)>0;②f(x)-f(-x)=0:③f(-3)=0,则不等式x•f(x)<0的解集是( )
组卷:230引用:5难度:0.6 -
7.下列结论不正确的是( )
组卷:9引用:1难度:0.7
四、解答题(本題共6小题,共56分.解答应写出文字说明、证明过程或演算步骤)
-
21.设a>0,b>0,函数f(x)=ax2-bx-a+b.
(1)若f(x)在[0,1]上的最大值为b-a,求的取值范围;ba
(2)当x∈[0,m]时,若2b≥a,不等式f(x)≤(2b-a)(x+1)恒成立,求m的最大值.组卷:30引用:1难度:0.3 -
22.已知函数f(x),g(x)都是定义在R上的函数,且f[f(x)]=x,f(x)在R上单调递增.g(x)在(0,+∞)上单调递增,g(-1)=0,且对∀x,y∈R,都有g(x+y)=g(x)+g(y).
(1)求f(x)的解析式;
(2)解不等式.g(x)-g(-x)f(x)<0组卷:69引用:1难度:0.4