2023-2024学年上海市嘉定一中高三(上)开学数学试卷
发布:2024/8/12 8:0:1
一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)考生应在答题纸的相应位置直接填写结果。
-
1.已知A={y|y=x2+1},B={x|x<3},则A∪B=.
组卷:40引用:2难度:0.7 -
2.若x>0,则x+
的最小值为2x组卷:54引用:7难度:0.7 -
3.函数y=x2-6x+3,x∈[-1,4]的值域是 .
组卷:926引用:2难度:0.8 -
4.已知
,则sinα=45=.cos(α+π2)组卷:1518引用:9难度:0.9 -
5.已知直线l1:x+y=0和l2:2x-ay+3=0(a∈R),若l1⊥l2,则a=.
组卷:146引用:4难度:0.8 -
6.设向量
、a满足|b|=1,a•a=2,则b•(a+a)=.b组卷:151引用:3难度:0.8 -
7.已知首项为2的等比数列{bn}的公比为
,则这个数列所有项的和为 .13组卷:162引用:3难度:0.7
三、解答题(本大题共有5题,满分39分)解答下列各题必须在答题纸的相应位与出必要的步骤.
-
20.已知椭圆C的中心在原点,焦点在x轴上,离心率为
,短轴长为412.3
(1)求椭圆C的标准方程;
(2)直线x=2与椭圆C交于P,Q两点,A,B是椭圆C上位于直线PQ两侧的动点,且直线AB的斜率为.12
(i)求四边形APBQ面积的最大值;
(ii)设直线PA的斜率为k1,直线PB的斜率为k2,判断k1+k2的值是否为常数,并说明理由.组卷:1710引用:15难度:0.1 -
21.已知函数f(x)=aex-be-x-(a+1)x(a、b∈R).
(1)当a=2,b=0时,求函数图像过点(0,f (0))的切线方程;
(2)当b=1时,f(x)既存在极大值,又存在极小值,求实数a的取值范围;
(3)当a∈(0,1),b=1时,x1、x2分别为f(x)的极大值点和极小值点,且f(x1)+kf(x2)>0,求实数k的取值范围.组卷:200引用:7难度:0.3