试卷征集
加入会员
操作视频
当前位置: 试卷中心 > 试卷详情

2022-2023学年湖南省衡阳市衡南县高二(下)期末数学试卷

发布:2024/6/27 8:0:9

一、单选题

  • 1.A={x|x≤2},B={x∈Z|0≤x≤4},则A∩B=(  )

    组卷:425引用:4难度:0.9
  • 2.在复平面内,复数z对应的点的坐标为(1,2),则zi=(  )

    组卷:126引用:10难度:0.8
  • 3.命题p:∃x>1,x2-2x>0的否定为(  )

    组卷:199引用:4难度:0.7
  • 4.已知
    a
    =
    0
    5
    b
    =
    2
    ,-
    1
    ,则
    b
    a
    上的投影向量的坐标为(  )

    组卷:171引用:4难度:0.8
  • 5.马林•梅森(MarinMersenne,1588-1648)是17世纪法国著名的数学家和修道士,也是当时欧洲科学界一位独特的中心人物.梅森在欧几里得、费马等人研究的基础上对2p-1作了大量的计算、验证工作.人们为纪念梅森在数论方面的这一贡献,将形如2p-1(其中p是素数)的素数,称为梅森素数(素数也称质数).在不超过40的素数中,随机选取3个不同的数,至少有一个为梅森素数的概率是(  )

    组卷:6引用:2难度:0.8
  • 6.设随机变量η~N(1,σ2),若P(η<-1)=P(η>2a-1),则a的值为(  )

    组卷:19引用:2难度:0.7
  • 7.等腰三角形的底和腰之比为
    5
    -
    1
    2
    (黄金分割比)的三角形称为黄金三角形,它被称为最美的三角形.如图,正五角星由五个黄金三角形和一个正五边形组成,且黄金三角形ABC的顶角A=36°.根据这些信息,可求得cos216°的值为(  )

    组卷:44引用:3难度:0.7

四、解答题

  • 21.如图,已知椭圆Γ1
    x
    2
    8
    +
    y
    2
    4
    =1的两个焦点为F1,F2,且F1,F2为双曲线Γ2的顶点,双曲线Γ2的离心率e=
    2
    ,设P为该双曲线Γ2上异于顶点的任意一点,直线PF1,PF2的斜率分别为k1,k2,且直线PF1和PF2与椭圆Γ1的交点分别为A,B和C,D.
    (1)求双曲线Γ2的标准方程;
    (2)证明:直线PF1,PF2的斜率之积k1•k2为定值;
    (3)求
    |
    AB
    |
    |
    CD
    |
    的取值范围.

    组卷:105引用:6难度:0.4
  • 22.已知函数f(x)=ex-ax-1.
    (1)讨论函数f(x)的单调性;
    (2)∀x∈(0,+∞),关于x的不等式ex-1+xln(tx)≥x2+2x恒成立,求正实数t的取值范围.

    组卷:35引用:3难度:0.5
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正