2022-2023学年北京四十三中九年级(上)期中数学试卷
发布:2024/9/11 4:0:9
一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.
-
1.围棋起源于中国,古代称之为“弈”,至今已有4000多年的历史.以下是在棋谱中截取的四个部分,由黑白棋子摆成的图案是中心对称图形的是( )
组卷:789引用:27难度:0.9 -
2.抛物线y=(x+1)2+2的顶点坐标为( )
组卷:140引用:6难度:0.7 -
3.将抛物线y=-2x2向上平移3个单位长度,再向右平移2个单位长度,所得到的抛物线为( )
组卷:259引用:8难度:0.7 -
4.关于x的一元二次方程x2-4x+m=0有两个不相等的实数根,则m的值可能是( )
组卷:212引用:6难度:0.7 -
5.如图,在平面直角坐标系中,△ABC绕某点旋转90°得到△A'B'C',则旋转中心是点( )
组卷:506引用:7难度:0.6 -
6.科学兴趣小组的同学们,将自己收集的标本向本组的其他成员各赠送一件,全组共互赠了132件,设全组共有x名学生,则x满足的方程是( )
组卷:182引用:11难度:0.7 -
7.如图,△ABC中,∠B=35°,∠BAC=70°,将△ABC绕点A旋转逆时针旋转α度(0<α<180)后得到△ADE,点E恰好落在BC上,则α=( )
组卷:1339引用:16难度:0.7 -
8.如图为某二次函数的部分图象,有如下四个结论:
①此二次函数表达式为y=x2-x+9;14
②若点B(-1,n)在这个二次函数图象上,则n>m;
③该二次函数图象与x轴的另一个交点为(-4,0);
④当0<x<6时,m<y<8.
所有正确结论的序号是( )组卷:576引用:8难度:0.6
二、填空题(本题共16分,每小题2分)
-
9.在平面直角坐标系中,点P(-1,-3)关于原点的对称点坐标为.
组卷:106引用:10难度:0.7
三、解答题(本题共68分,第17-22题每题5分,第23-26题每题6分,第27、28题每题7分)x2-6x+4=0
-
27.如图,在等边三角形ABC中,点P为△ABC内一点,连接AP,BP,CP,将线段AP绕点A顺时针旋转60°得到AP',连接PP',BP'.
(1)用等式表示BP'与CP的数量关系,并证明;
(2)当∠BPC=120°时,
①直接写出∠P'BP的度数为 ;
②若M为BC的中点,连接PM,用等式表示PM与AP的数量关系,并证明.组卷:2050引用:23难度:0.3 -
28.定义:在平面直角坐标系中,图形G上点P(x,y)的纵坐标y与其横坐标x的差y-x称为P点的“坐标差”,而图形G上所有点的“坐标差”中的最大值称为图形G的“特征值”.
(1)①点A(1,3)的“坐标差”为 ;
②抛物线y=-x2+3x+3的“特征值”为 ;
(2)某二次函数y=-x2+bx+c(c≠0)的“特征值”为1,点B(m,0)与点C分别是此二次函数的图象与x轴和y轴的交点,且点B与点C的“坐标差”相等.
①直接写出m=;(用含c的式子表示)
②求b的值.组卷:606引用:4难度:0.4