微专题探究学习:阅读探究学习过程,完成(1)小题中的填空、(2)小题的图形设计和(3)小题的求面积.
《面积与完全平方公式》
如图1,阴影部分是一个边长为a的大正方形剪去一个边长为b的小正方形和两个宽为b的长方形之后所剩余的部分.
(1)①图1中剪去的长方形的长为 a-ba-b,面积为 ab-b2ab-b2.
②用两种方式表示阴影部分的面积为 (a-b)2(a-b)2或 a2-2ab+b2a2-2ab+b2,由此可以验证的公式为 (a-b)2=a2-2ab+b2(a-b)2=a2-2ab+b2.

(2)请设计一个新的图形验证公式:(a+b)2=a2+2ab+b2
(3)如图2,S1,S2分别表示边长为a,b的正方形的面积,且A,B,C三点在一条直线上,若S1+S2=40,AB=8,求图中阴影部分的面积.
【考点】完全平方公式的几何背景;多项式乘多项式.
【答案】a-b;ab-b2;(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2
【解答】
【点评】
声明:本试题解析著作权属菁优网所有,未经书面同意,不得复制发布。
发布:2024/7/12 8:0:9组卷:728引用:3难度:0.5
相似题
-
1.学习整式乘法时,老师拿出三种型号卡片,如图1.
(1)利用多项式与多项式相乘的法则,计算:(a+2b)(a+b)=;
(2)选取1张A型卡片,4张C型卡片,则应取 张B型卡片才能用它们拼成一个新的正方形,此新的正方形的边长是 (用含a,b的代数式表示);
(3)选取4张C型卡片在纸上按图2的方式拼图,并剪出中间正方形作为第四种D型卡片,由此可检验的等量关系为 ;
(4)选取1张D型卡片,3张C型卡片按图3的方式不重复的叠放长方形MNPQ框架内,已知NP的长度固定不变,MN的长度可以变化,且MN≠0.图中两阴影部分(长方形)的面积分别表示为S1,S2,若S1-S2=3b2,则a与b有什么关系?请说明理由.发布:2024/12/23 18:0:1组卷:3664引用:6难度:0.1 -
2.如图所示的是正方形的房屋结构平面图,其中主卧与客卧都是正方形,其面积之和比其余面积(阴影部分)多6.25m2,则主卧与客卧的周长差是( )
发布:2025/1/1 6:30:3组卷:207引用:4难度:0.6 -
3.如图,两个正方形边长分别为a,b,如果a+b=10,ab=18,则阴影部分的面积为.
发布:2024/12/23 18:0:1组卷:2015引用:6难度:0.5