试卷征集
加入会员
操作视频
当前位置: 试卷中心 > 试卷详情

2022-2023学年上海市浦东新区建平中学高二(下)期末数学试卷

发布:2024/5/24 8:0:9

一、填空题(第1-6题每题4分,第7-12题每题5分,满分54分)

  • 1.已知P(A)=
    1
    3
    ,则
    P
    A
    =

    组卷:101引用:2难度:0.9
  • 2.为了了解同学们的作业量,学校决定采用分层抽样的方法从高一、高二、高三学生中选取150人进行调查,已知高一学生有400人,高二学生有500人,高三学生有600人,则应抽取的高三学生人数为

    组卷:27引用:1难度:0.8
  • 3.已知随机变量X服从二项分布
    B
    8
    1
    4
    ,则E[X]=

    组卷:57引用:1难度:0.7
  • 4.甲和乙在五分钟内独立复原魔方的概率分别为0.7和0.5,则甲、乙两人在五分钟内均独立复原魔方的概率为

    组卷:42引用:1难度:0.7
  • 5.有5个除颜色以外完全一样的玻璃球,其中3个白色,2个红色,每次取一个,不放回地取两次,则在第一次取到白球的条件下第二次取到白球的概率是

    组卷:61引用:1难度:0.8
  • 6.
    x
    -
    2
    x
    3
    4
    的二项展开式中常数项为

    组卷:34引用:2难度:0.7
  • 7.如图所示的茎叶图中记录了甲、乙两人5次的数学考试成绩(茎为十位,叶为个位),若这两组数据的中位数相等,且平均数也相等,则x+y=

    组卷:32引用:1难度:0.8

三、解答题(本大题共5题,共14+14+14+16+18=76分)

  • 20.已知椭圆E:
    x
    2
    4
    +
    y
    2
    =
    1
    ,A,B,C是椭圆E上三个不同的点,原点O为△ABC的重心.
    (1)求椭圆E的离心率;
    (2)如果直线AB和直线OC的斜率都存在,求证kAB•kOC为定值;
    (3)试判断△ABC的面积是否为定值,若是,求出这个定值;若不是,请说明理由.

    组卷:103引用:3难度:0.4
  • 21.给定函数f(x),若点P是f(x)的两条互相垂直的切线的交点,则称点P为函数f(x)的“正交点”.记函数f(x)所有“正交点”所组成的集合为M.
    (1)若f(x)=ex,判断集合M是否为空集,并说明理由;
    (2)若f(x)=2x2,证明:f(x)的所有“正交点”在一条定直线上,并求出该直线;
    (3)若f(x)=x3-ax2,记f(x)图像上的所有点组成的集合为N,且M∩N=∅,求实数a的取值范围.

    组卷:133引用:4难度:0.5
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正