试卷征集
加入会员
操作视频
当前位置: 试卷中心 > 试卷详情

2023-2024学年上海市奉贤中学高二(上)月考数学试卷(10月份)

发布:2024/9/17 16:0:8

一、填空题(本大题共有12小题,满分54分,第1-6题每题4分,第7-12题每题5分)

  • 1.已知点A(0,0),B(2,3),则直线AB的倾斜角α=

    组卷:26引用:2难度:0.8
  • 2.已知向量
    a
    =
    -
    3
    2
    4
    b
    =
    1
    ,-
    2
    2
    ,则
    |
    a
    -
    b
    |
    =

    组卷:33引用:2难度:0.5
  • 3.过点(-2,3)且与直线2x+y+1=0垂直的直线l的方程是

    组卷:140引用:6难度:0.8
  • 4.已知向量
    a
    =
    2
    1
    3
    b
    =
    1
    1
    ,-
    1
    c
    =
    4
    3
    m
    ,若
    a
    b
    c
    共面,则m=

    组卷:60引用:3难度:0.5
  • 5.若直线l1:3kx-(k+2)y+6=0和直线l2:kx+(2k-3)y+2=0斜率互为相反数,则k=

    组卷:51引用:1难度:0.8
  • 6.
    A
    3
    2
    2
    关于直线
    x
    +
    y
    +
    1
    3
    =
    0
    的对称点为

    组卷:96引用:2难度:0.6
  • 7.已知平面α的一个法向量为
    n
    =
    1
    ,-
    1
    1
    ,直线l的一个方向向量为
    m
    =
    2
    2
    0
    ,则直线l与平面α的位置关系是

    组卷:29引用:1难度:0.8

三、解答题(本大题共5题,满分78分)

  • 20.已知直线l:ax-y+2-a=0恒过点P,且与x轴,y轴分别交于A,B两点,O为坐标原点.
    (1)求点P的坐标;
    (2)当点O到直线l的距离最大时,求直线l的方程;
    (3)当|PA|•|PB|取得最小值时,求△AOB的面积.

    组卷:395引用:9难度:0.7
  • 21.如图,在梯形ABCD中,AB∥CD,AD=DC=CB=1,∠ABC=60°,四边形ACFE为矩形,平面ACFE⊥平面ABCD,CF=1.
    (1)求证:BC⊥平面ACFE;
    (2)求平面ABF与平面BCF所成角的大小;
    (3)若点M在线段EF上运动,设平面MAB与平面FCB所成二面角的平面角为θ(θ≤90°),试求cosθ的范围.

    组卷:50引用:1难度:0.4
深圳市菁优智慧教育股份有限公司
粤ICP备10006842号公网安备44030502001846号
©2010-2025 jyeoo.com 版权所有
APP开发者:深圳市菁优智慧教育股份有限公司| 应用名称:菁优网 | 应用版本:5.0.7 |隐私协议|第三方SDK|用户服务条款
广播电视节目制作经营许可证|出版物经营许可证|网站地图
本网部分资源来源于会员上传,除本网组织的资源外,版权归原作者所有,如有侵犯版权,请立刻和本网联系并提供证据,本网将在三个工作日内改正