2022-2023学年广东省肇庆一中高三(上)月考数学试卷(11月份)
发布:2024/8/17 13:0:1
一、单选题(共40分)
-
1.设集合M={x|log2x<1},N={x|2x-1<0},则M∩N=( )
组卷:192引用:7难度:0.7 -
2.若(1-i)(1-z)=1,则z的虚部为( )
组卷:5引用:3难度:0.8 -
3.如图,圆形纸片的四分之一扇形(阴影部分)是圆锥A的侧面展开图,其余部分是圆锥B的侧面展开图,则圆锥A与圆锥B的表面积之比为( )
组卷:9引用:2难度:0.7 -
4.若关于x的不等式a•2|x|>2|x|+1(x∈R)有实数解,则实数a的取值范围是( )
组卷:9引用:2难度:0.5 -
5.已知角α满足
,则sin2α=( )tan(α-π4)=13组卷:199引用:5难度:0.7 -
6.“割圆术”是我国古代计算圆周率π的一种方法.在公元263年左右,由魏晋时期的数学家刘徽发明.其原理就是利用圆内接正多边形的面积逐步逼近圆的面积,进而求π.当时刘徽就是利用这种方法,把π的近似值计算到3.1415和3.1416之间,这是当时世界上对圆周率π的计算最精确的数据.这种方法的可贵之处就是利用已知的、可求的来逼近未知的、要求的,用有限的来逼近无穷的.为此,刘徽把它概括为“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”.这种方法极其重要,对后世产生了巨大影响,在欧洲,这种方法后来就演变为现在的微积分.根据“割圆术”,若用正六十边形来估算圆周率π,则π的近似值是( )(精确到0.001)(参考数据sin6°≈0.10452)
组卷:3引用:3难度:0.7 -
7.若将函数
的图象向右平移m(m>0)个单位后,所得图象对应的函数为奇函数,则m的最小值是( )f(x)=sin2x-3cos2x组卷:20引用:3难度:0.7
四、解答题(共70分)
-
21.已知函数f(x)=ax2-(a+2)x+lnx(a>0).
(1)若x=1是函数f(x)的极值点,求f(x)在区间上的最值;[12,2]
(2)求函数f(x)的单调增区间.组卷:135引用:7难度:0.6 -
22.已知函数f(x)=aex+ln(ea)(a>0).
(1)当a=1时,求过点(-2,0)且和曲线y=f(x)相切的直线方程;
(2)若对任意实数x>1,不等式f(x)≥ln(x-1)恒成立,求实数a的取值范围.组卷:137引用:5难度:0.4