2022-2023学年湖南省郴州市高二(下)期末数学试卷
发布:2024/6/16 8:0:10
一、单项选择题(本大题共8小题,每小题5分,共40分.每小题在给出的四个选项中,只有一项是符合题目要求的)
-
1.复数
=( )21+i组卷:9引用:4难度:0.9 -
2.已知集合A={x|x2+x-6≤0},B={x|y=lg(1-x)},则A∩B=( )
组卷:13引用:1难度:0.9 -
3.已知抛物线x2=8y上一点P到x轴的距离是6,则点P到该抛物线焦点的距离是( )
组卷:41引用:3难度:0.7 -
4.已知数列{an}中,
且a7=8,a4a8=4,则a2n=an-1an+1(n>1,n∈N)=( )an+1an组卷:38引用:2难度:0.8 -
5.“环境就是民生,青山就是美丽,蓝天也是幸福”,随着经济的发展和社会的进步,人们的环保意识日益增强.某化工厂产生的废气中污染物的含量为1.2mg/cm3,排放前每过滤一次,该污染物的含量都会减少20%,当地环保部门要求废气中该污染物的含量不能超过0.2mg/cm3,若要使该工厂的废气达标排放,那么在排放前需要过滤的次数至少为( )
(参考数据:lg2≈0.3,lg3≈0.477)组卷:299引用:20难度:0.6 -
6.若非零向量
满足a,b,则(a+b)(a-b)=0,(2a+b)⊥b与a的夹角为( )b组卷:58引用:1难度:0.7 -
7.在数学中,有一个被称为自然常数(又叫欧拉数)的常数e≈2.71828.小明在设置银行卡的数字密码时,打算将自然常数的前6位数字2,7,1,8,2,8进行某种排列得到密码.如果排列时要求2不排第一个,两个8相邻,那么小明可以设置的不同的密码个数为( )
组卷:257引用:7难度:0.8
四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)
-
21.已知平面上动点E到点A(1,0)与到圆B:x2+y2+2x-15=0的圆心B的距离之和等于该圆的半径.
(1)求点E的轨迹方程;
(2)已知M,N两点的坐标分别为(-2,0),(2,0),过点A的直线与(1)中点E的轨迹交于C,D两点(C,D与M,N不重合).证明:直线MC与ND的交点的横坐标是定值.组卷:156引用:1难度:0.6 -
22.已知函数
,其中a为小于0的常数.f(x)=2lnx+a2x2-(a+2)x
(1)试讨论f(x)的单调性;
(2)若函数f(x)有两个不相等的零点x1,x2,证明:x1+x2>2.组卷:65引用:1难度:0.6