2023-2024学年天津市北辰区朱唐庄中学高三(上)第一次月考数学试卷(10月份)
发布:2024/9/16 13:0:8
一、单项选择(每题5分,共60分。每题仅有一个正确选项,请将正确选项写到答题卡上)
-
1.已知U={0,1,2,3,4,5,6},A={1,3,5},B={2,4,5},则A∩(∁UB)( )
组卷:46引用:1难度:0.9 -
2.设集合A={0,1,2,3},B={1,3,4},C={x∈R|x2-3x+2>0},则(A∪B)∩C=( )
组卷:350引用:4难度:0.7 -
3.已知全集U={x∈Z|x2-5x-6≤0},集合A={x∈Z|x(2-x)≥0},集合B={1,2,3},则集合∁U(A∪B)=( )
组卷:339引用:6难度:0.7 -
4.已知p:0<x<2,q:-1<x<3,则p是q的( )
组卷:800引用:42难度:0.9 -
5.已知a≠0,命题p:x=1是一元二次方程ax2+bx+c=0的一个根,命题q:a+b+c=0,则p是q的( )
组卷:418引用:5难度:0.7 -
6.设x∈R,则“
”是“|x-1|<4”的( )x-52-x>0组卷:47引用:2难度:0.7 -
7.下列可能是函数
的图象的是( )y=x2-1ex2组卷:42引用:1难度:0.8
三、解答题(每题15分,共60分)
-
21.已知底面ABCD是正方形,PA⊥平面ABCD,PA∥DQ,PA=AD=3DQ=3,点E、F'分别为线段PB、CQ的中点.
(1)求证:EF∥平面PADQ;
(2)求直线EF与平面PCQ夹角的正弦值;
(3)求点F到面PAC的距离.组卷:44引用:1难度:0.5 -
22.如图,在四棱锥P-ABCD中,PA⊥平面ABCD,AB∥CD,且CD=2,AB=1,
为PD的中点.BC=22,PA=1,AB⊥BC,N
(1)求平面PAD与平面PBC所成锐二面角的余弦值;
(2)求点N到直线BC的距离;
(3)在线段PD上是否存在一点M,使得直线CM与平面PBC所成角的正弦值为,若存在,求出2626的值;若不存在,说明理由.DMDP组卷:299引用:4难度:0.4